- -

Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments

Show full item record

García-Arias, A.; Francés, F.; Morales De La Cruz, MV.; Real Llanderal, J.; Vallés Morán, FJ.; Garófano-Gómez, V.; Martinez-Capel, F. (2014). Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments. Ecohydrology. 7(2):659-677. doi:10.1002/eco.1387

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45265

Files in this item

Item Metadata

Title: Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments
Author: García-Arias, Alicia Francés, F. Morales de la Cruz, Marco Vinicio Real Llanderal, Joaquín Vallés Morán, F. J. Garófano-Gómez, Virginia Martinez-Capel, Francisco
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Issued date:
Abstract:
Biotic and abiotic interactions between the riparian zone and the river determine relevant hydrological processes and exert control over riparian and bordering upland vegetation types. Vegetation growth and development are ...[+]
Subjects: Soil moisture , Evapotranspiration modelling , Riparian vegetation , Spatial distribution , Functional types
Copyrigths: Reserva de todos los derechos
Source:
Ecohydrology. (issn: 1936-0584 )
DOI: 10.1002/eco.1387
Publisher:
Wiley
Publisher version: http://dx.doi.org/10.1002/eco.1387
Project ID:
info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/
Thanks:
The authors would like to thank the Spanish Ministry of Environment and the Spanish Ministry of Economy and Competitiveness for their financial support through the research projects RIBERA (21.812-061/8511) and SCARCE ...[+]
Type: Artículo

References

AGUIAR, F. C., & FERREIRA, M. T. (2005). Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environmental Conservation, 32(1), 30-41. doi:10.1017/s0376892905001992

Allen RG Pereira LS Raes D Smith M 1998 Crop evapotranspiration - guidelines for computing crop water requirements

Altier LS Lowrance R Williams RG Inamdar SP Bosch DD Sheridan JM Hubbard RK Thomas DL 2002 Riparian ecosystem management model: simulator for ecological processes in riparian zones [+]
AGUIAR, F. C., & FERREIRA, M. T. (2005). Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environmental Conservation, 32(1), 30-41. doi:10.1017/s0376892905001992

Allen RG Pereira LS Raes D Smith M 1998 Crop evapotranspiration - guidelines for computing crop water requirements

Altier LS Lowrance R Williams RG Inamdar SP Bosch DD Sheridan JM Hubbard RK Thomas DL 2002 Riparian ecosystem management model: simulator for ecological processes in riparian zones

Amenu, G. G., & Kumar, P. (2008). A model for hydraulic redistribution incorporating coupled soil-root moisture transport. Hydrology and Earth System Sciences, 12(1), 55-74. doi:10.5194/hess-12-55-2008

Azami, K., Suzuki, H., & Toki, S. (2004). Changes in riparian vegetation communities below a large dam in a monsoonal region: Futase Dam, Japan. River Research and Applications, 20(5), 549-563. doi:10.1002/rra.763

Baird, K. J., & Maddock, T. (2005). Simulating riparian evapotranspiration: a new methodology and application for groundwater models. Journal of Hydrology, 312(1-4), 176-190. doi:10.1016/j.jhydrol.2005.02.014

Bendix, J. (1994). Scale, Direction, and Pattern in Riparian Vegetation-Environment Relationships. Annals of the Association of American Geographers, 84(4), 652-665. doi:10.1111/j.1467-8306.1994.tb01881.x

Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. F. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92(12), 3058-3070. doi:10.1016/j.jenvman.2011.07.017

Brinson, M. M., & Verhoeven, J. (1999). Riparian forests. Maintaining Biodiversity in Forest Ecosystems, 265-299. doi:10.1017/cbo9780511613029.010

Brookes, C. ., Hooke, J. ., & Mant, J. (2000). Modelling vegetation interactions with channel flow in river valleys of the Mediterranean region. CATENA, 40(1), 93-118. doi:10.1016/s0341-8162(99)00065-x

Brouwer C Goffeau A Heibloem M 1985 Irrigation Water Management: Training Manual No. 1-Introduction to Irrigation http://www.fao.org/docrep/R4082E/R4082E00.htm

Butler, J. J., Kluitenberg, G. J., Whittemore, D. O., Loheide, S. P., Jin, W., Billinger, M. A., & Zhan, X. (2007). A field investigation of phreatophyte-induced fluctuations in the water table. Water Resources Research, 43(2). doi:10.1029/2005wr004627

CAMPBELL, G. S. (1974). A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA. Soil Science, 117(6), 311-314. doi:10.1097/00010694-197406000-00001

Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., & Schulze, E.-D. (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108(4), 583-595. doi:10.1007/bf00329030

Choi, S.-U., Yoon, B., & Woo, H. (2005). Effects of dam-induced flow regime change on downstream river morphology and vegetation cover in the Hwang River, Korea. River Research and Applications, 21(2-3), 315-325. doi:10.1002/rra.849

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37-46. doi:10.1177/001316446002000104

Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213-220. doi:10.1037/h0026256

Cooper, A., Shine, T., McCann, T., & Tidane, D. A. (2006). An ecological basis for sustainable land use of Eastern Mauritanian wetlands. Journal of Arid Environments, 67(1), 116-141. doi:10.1016/j.jaridenv.2006.02.003

DAHM, C. N., CLEVERLY, J. R., ALLRED COONROD, J. E., THIBAULT, J. R., MCDONNELL, D. E., & GILROY, D. J. (2002). Evapotranspiration at the land/water interface in a semi-arid drainage basin. Freshwater Biology, 47(4), 831-843. doi:10.1046/j.1365-2427.2002.00917.x

David, T. S., Henriques, M. O., Kurz-Besson, C., Nunes, J., Valente, F., Vaz, M., … David, J. S. (2007). Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiology, 27(6), 793-803. doi:10.1093/treephys/27.6.793

Eagleson, P. S. (2002). Ecohydrology. doi:10.1017/cbo9780511535680

Glenn, E. P., Neale, C. M. U., Hunsaker, D. J., & Nagler, P. L. (2011). Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrological Processes, 25(26), 4050-4062. doi:10.1002/hyp.8392

Glenz C 2005 Process-based, spatially-explicit modelling of riparian forest dynamics in Central Europe - tool for decision making in river restoration 10.5075/epfl-thesis-3223

González, E., González-Sanchis, M., Comín, F. A., & Muller, E. (2010). Hydrologic thresholds for riparian forest conservation in a regulated large Mediterranean river. River Research and Applications, 28(1), 71-80. doi:10.1002/rra.1436

Goodrich, D. (2000). Seasonal estimates of riparian evapotranspiration using remote and in situ measurements. Agricultural and Forest Meteorology, 105(1-3), 281-309. doi:10.1016/s0168-1923(00)00197-0

Horton, J. L., & Clark, J. L. (2001). Water table decline alters growth and survival of Salix gooddingii and Tamarix chinensis seedlings. Forest Ecology and Management, 140(2-3), 239-247. doi:10.1016/s0378-1127(00)00314-5

Horton, J. L., Kolb, T. E., & Hart, S. C. (2001). Responses of riparian trees to interannual variation in ground water depth in a semi-arid river basin. Plant, Cell and Environment, 24(3), 293-304. doi:10.1046/j.1365-3040.2001.00681.x

Hupp, C. R., & Osterkamp, W. R. (1985). Bottomland Vegetation Distribution along Passage Creek, Virginia, in Relation to Fluvial Landforms. Ecology, 66(3), 670-681. doi:10.2307/1940528

Hupp, C. R., & Osterkamp, W. R. (1996). Riparian vegetation and fluvial geomorphic processes. Geomorphology, 14(4), 277-295. doi:10.1016/0169-555x(95)00042-4

S. P. Inamdar, J. M. Sheridan, R. G. Williams, D. D. Bosch, R. R. Lowrance, L. S. Altier, & D. L. Thomas. (1999). RIPARIAN ECOSYSTEM MANAGEMENT MODEL (REMM): I. TESTING OF THE HYDROLOGIC COMPONENT FOR A COASTAL PLAIN RIPARIAN SYSTEM. Transactions of the ASAE, 42(6), 1679-1690. doi:10.13031/2013.13332

Kellman, M., & Roulet, N. (1990). Nutrient Flux and Retention in a Tropical Sand-Dune Succession. The Journal of Ecology, 78(3), 664. doi:10.2307/2260891

Laio, F., Porporato, A., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 707-723. doi:10.1016/s0309-1708(01)00005-7

Lambers, H., Chapin, F. S., & Pons, T. L. (1998). Plant Physiological Ecology. doi:10.1007/978-1-4757-2855-2

Lambs, L. (2004). Interactions between groundwater and surface water at river banks and the confluence of rivers. Journal of Hydrology, 288(3-4), 312-326. doi:10.1016/j.jhydrol.2003.10.013

Lamontagne, S., Cook, P. G., O’Grady, A., & Eamus, D. (2005). Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). Journal of Hydrology, 310(1-4), 280-293. doi:10.1016/j.jhydrol.2005.01.009

Larcher, W. (2003). Physiological Plant Ecology. doi:10.1007/978-3-662-05214-3

Lautz, L. K. (2007). Estimating groundwater evapotranspiration rates using diurnal water-table fluctuations in a semi-arid riparian zone. Hydrogeology Journal, 16(3), 483-497. doi:10.1007/s10040-007-0239-0

Lavorel, S., McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution, 12(12), 474-478. doi:10.1016/s0169-5347(97)01219-6

Lee, J.-E., Oliveira, R. S., Dawson, T. E., & Fung, I. (2005). Root functioning modifies seasonal climate. Proceedings of the National Academy of Sciences, 102(49), 17576-17581. doi:10.1073/pnas.0508785102

Lite, S. J., & Stromberg, J. C. (2005). Surface water and ground-water thresholds for maintaining Populus–Salix forests, San Pedro River, Arizona. Biological Conservation, 125(2), 153-167. doi:10.1016/j.biocon.2005.01.020

Lite, S. J., Bagstad, K. J., & Stromberg, J. C. (2005). Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. Journal of Arid Environments, 63(4), 785-813. doi:10.1016/j.jaridenv.2005.03.026

Lowrance R Altier L Williams R Inambar S Bosch D Sheridan J Thomas D Hubbard R 1998 The riparian ecosystem management model: simulator for ecological processes in buffer systems 81 88

Mac Nish, R. (2000). Comparison of riparian evapotranspiration estimates based on a water balance approach and sap flow measurements. Agricultural and Forest Meteorology, 105(1-3), 271-279. doi:10.1016/s0168-1923(00)00196-9

Malanson, G. P. (1993). Riparian Landscapes. doi:10.1017/cbo9780511565434

Manel, S., Williams, H. C., & Ormerod, S. J. (2002). Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38(5), 921-931. doi:10.1046/j.1365-2664.2001.00647.x

MERRITT, D. M., SCOTT, M. L., LeROY POFF, N., AUBLE, G. T., & LYTLE, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55(1), 206-225. doi:10.1111/j.1365-2427.2009.02206.x

Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2010). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221(16), 1995-2002. doi:10.1016/j.ecolmodel.2010.04.017

Murillo J Rodríguez Pallarés M Andrés-Urrutia A Brufau P García-Navarro P 2008 A mathematical model for numerical simulation of shallow water flow: description and practical application of GUAD 2D 978-84-7653-074-0

Nagler, P. (2011). The role of remote sensing observations and models in hydrology: the science of evapotranspiration. Hydrological Processes, 25(26), 3977-3978. doi:10.1002/hyp.8436

Ocampo, C. J., Sivapalan, M., & Oldham, C. (2006). Hydrological connectivity of upland-riparian zones in agricultural catchments: Implications for runoff generation and nitrate transport. Journal of Hydrology, 331(3-4), 643-658. doi:10.1016/j.jhydrol.2006.06.010

Perona, P., Molnar, P., Savina, M., & Burlando, P. (2009). An observation-based stochastic model for sediment and vegetation dynamics in the floodplain of an Alpine braided river. Water Resources Research, 45(9). doi:10.1029/2008wr007550

Porporato, A., Laio, F., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 725-744. doi:10.1016/s0309-1708(01)00006-9

Quevedo, D. I., & Francés, F. (2008). A conceptual dynamic vegetation-soil model for arid and semiarid zones. Hydrology and Earth System Sciences, 12(5), 1175-1187. doi:10.5194/hess-12-1175-2008

Richards, L. A. (1931). CAPILLARY CONDUCTION OF LIQUIDS THROUGH POROUS MEDIUMS. Physics, 1(5), 318-333. doi:10.1063/1.1745010

RICHARDS, K., BRASINGTON, J., & HUGHES, F. (2002). Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshwater Biology, 47(4), 559-579. doi:10.1046/j.1365-2427.2002.00920.x

Rodriguez-Iturbe, I., Porporato, A., Laio, F., & Ridolfi, L. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 695-705. doi:10.1016/s0309-1708(01)00004-5

Ryel, R., Caldwell, M., Yoder, C., Or, D., & Leffler, A. (2002). Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 130(2), 173-184. doi:10.1007/s004420100794

SALINAS, M. J., BLANCA, G., & ROMERO, A. T. (2000). Evaluating riparian vegetation in semi-arid Mediterranean watercourses in the south-eastern Iberian Peninsula. Environmental Conservation, 27(1), 24-35. doi:10.1017/s0376892900000047

Saxton, K. E., & Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70(5), 1569. doi:10.2136/sssaj2005.0117

Schaeffer SM Williams DG 1998 Transpiration of desert riparian forest canopies estimated from sap flux

Schenk, H. J., & Jackson, R. B. (2002). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90(3), 480-494. doi:10.1046/j.1365-2745.2002.00682.x

Schenk, H. J., & Jackson, R. B. (2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126(1-2), 129-140. doi:10.1016/j.geoderma.2004.11.018

Schilling, K. E., & Kiniry, J. R. (2007). Estimation of evapotranspiration by reed canarygrass using field observations and model simulations. Journal of Hydrology, 337(3-4), 356-363. doi:10.1016/j.jhydrol.2007.02.003

Schulze, E.-D., Mooney, H. A., Sala, O. E., Jobbagy, E., Buchmann, N., Bauer, G., … Ehleringer, J. R. (1996). Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia, 108(3), 503-511. doi:10.1007/bf00333727

Scott RL Goodrich DC Levick LR 2003 A GIS-based management tool to quantify riparian vegetation groundwater use 222 227

SCOTT, R. L., HUXMAN, T. E., WILLIAMS, D. G., & GOODRICH, D. C. (2006). Ecohydrological impacts of woody-plant encroachment: seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment. Global Change Biology, 12(2), 311-324. doi:10.1111/j.1365-2486.2005.01093.x

Scott, R. (2000). The water use of two dominant vegetation communities in a semiarid riparian ecosystem. Agricultural and Forest Meteorology, 105(1-3), 241-256. doi:10.1016/s0168-1923(00)00181-7

Serrat-Capdevila, A., Scott, R. L., James Shuttleworth, W., & Valdés, J. B. (2011). Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system. Journal of Hydrology, 399(1-2), 1-11. doi:10.1016/j.jhydrol.2010.12.021

Snyder, K. (2000). Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agricultural and Forest Meteorology, 105(1-3), 227-240. doi:10.1016/s0168-1923(00)00193-3

Sparks, R. E. (1995). Need for Ecosystem Management of Large Rivers and Their Floodplains. BioScience, 45(3), 168-182. doi:10.2307/1312556

Sparovek, G., Beatriz Lima Ranieri, S., Gassner, A., Clerice De Maria, I., Schnug, E., Ferreira dos Santos, R., & Joubert, A. (2002). A conceptual framework for the definition of the optimal width of riparian forests. Agriculture, Ecosystems & Environment, 90(2), 169-175. doi:10.1016/s0167-8809(01)00195-5

Stave, J., Oba, G., Stenseth, N. C., & Nordal, I. (2005). Environmental gradients in the Turkwel riverine forest, Kenya: Hypotheses on dam-induced vegetation change. Forest Ecology and Management, 212(1-3), 184-198. doi:10.1016/j.foreco.2005.03.037

Stromberg, J. C. (2001). Restoration of riparian vegetation in the south-western United States: importance of flow regimes and fluvial dynamism. Journal of Arid Environments, 49(1), 17-34. doi:10.1006/jare.2001.0833

Stromberg, J. C., Tiller, R., & Richter, B. (1996). Effects of Groundwater Decline on Riparian Vegetation of Semiarid Regions: The San Pedro, Arizona. Ecological Applications, 6(1), 113-131. doi:10.2307/2269558

Stromberg, J. C., Wilkins, S. D., & Tress, J. A. (1993). Vegetation-Hydrology Models: Implications for Management of Prosopis Velutina (Velvet Mesquite) Riparian Ecosystems. Ecological Applications, 3(2), 307-314. doi:10.2307/1941833

Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A.-M., Muller, E., & D�camps, H. (2000). Impacts of riparian vegetation on hydrological processes. Hydrological Processes, 14(16-17), 2959-2976. doi:10.1002/1099-1085(200011/12)14:16/17<2959::aid-hyp129>3.0.co;2-b

Tabacchi, E., Planty-Tabacchi, A.-M., Roques, L., & Nadal, E. (2005). Seed inputs in riparian zones: implications for plant invasion. River Research and Applications, 21(2-3), 299-313. doi:10.1002/rra.848

Vidon, P. G. F., & Hill, A. R. (2004). Landscape controls on the hydrology of stream riparian zones. Journal of Hydrology, 292(1-4), 210-228. doi:10.1016/j.jhydrol.2004.01.005

Webb, R. H., & Leake, S. A. (2006). Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States. Journal of Hydrology, 320(3-4), 302-323. doi:10.1016/j.jhydrol.2005.07.022

Wild A 1992 Condiciones del suelo y desarrollo de las plantas según Russell

Zheng, Z., & Wang, G. (2007). Modeling the dynamic root water uptake and its hydrological impact at the Reserva Jaru site in Amazonia. Journal of Geophysical Research: Biogeosciences, 112(G4), n/a-n/a. doi:10.1029/2007jg000413

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record