Mostrar el registro sencillo del ítem
dc.contributor.author | García-Arias, Alicia | es_ES |
dc.contributor.author | Francés, F. | es_ES |
dc.contributor.author | Morales de la Cruz, Marco Vinicio | es_ES |
dc.contributor.author | Real Llanderal, Joaquín | es_ES |
dc.contributor.author | Vallés Morán, F. J. | es_ES |
dc.contributor.author | Garófano-Gómez, Virginia | es_ES |
dc.contributor.author | Martinez-Capel, Francisco | es_ES |
dc.date.accessioned | 2014-12-09T17:54:46Z | |
dc.date.available | 2014-12-09T17:54:46Z | |
dc.date.issued | 2014-04 | |
dc.identifier.issn | 1936-0584 | |
dc.identifier.uri | http://hdl.handle.net/10251/45265 | |
dc.description.abstract | Biotic and abiotic interactions between the riparian zone and the river determine relevant hydrological processes and exert control over riparian and bordering upland vegetation types. Vegetation growth and development are mainly controlled by water availability on semi-arid regions, where a moisture gradient determines the transition between the densely vegetated riparian zone and the semi-arid upland. To reproduce this spatial distribution, a mathematical model named RibAV is presented. Its conceptualization is based on the main ecohydrological modelling approaches and field expertise. The implementation of RibAV that is proposed in this paper allows the simulation of the distribution of three plant functional types [herbaceous riparian vegetation (HRV), woody riparian vegetation (WRV) and terrestrial vegetation (TV)] within the riparian zone. An evapotranspiration index (Eidx) obtained through RibAV is used as a criterion for plant absence/presence prediction. Two permanent river reaches of semi-arid Mediterranean basins, the Terde reach (Mijares River, Spain) and the Lorcha reach (Serpis River, Spain), have been selected as case studies for the calibration and validation of the model, respectively. Several criteria based on the confusion matrix were used to analyse the efficiency of RibAV on the prediction of plant distribution. The satisfactory performance of the model establishing the distribution of the riparian vegetation types and the limit between this zone and the bordering upland are demonstrated in this paper; the strength of the Eidx to classify plant functional types in riparian semi-arid environments is additionally proven | es_ES |
dc.description.sponsorship | The authors would like to thank the Spanish Ministry of Environment and the Spanish Ministry of Economy and Competitiveness for their financial support through the research projects RIBERA (21.812-061/8511) and SCARCE (Consolider-Ingenio 2010 CSD2009-00065), respectively. In addition, the authors would like to thank the Hydrological Studies Centre (CEH-CEDEX), the Jucar River Basin Authority and the Spanish National Meteorological Agency (AEMET) for supplying the hydrological data, the aerial photographs and the meteorological data, respectively. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Ecohydrology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Soil moisture | es_ES |
dc.subject | Evapotranspiration modelling | es_ES |
dc.subject | Riparian vegetation | es_ES |
dc.subject | Spatial distribution | es_ES |
dc.subject | Functional types | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/eco.1387 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | García-Arias, A.; Francés, F.; Morales De La Cruz, MV.; Real Llanderal, J.; Vallés Morán, FJ.; Garófano-Gómez, V.; Martinez-Capel, F. (2014). Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments. Ecohydrology. 7(2):659-677. doi:10.1002/eco.1387 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/eco.1387 | es_ES |
dc.description.upvformatpinicio | 659 | es_ES |
dc.description.upvformatpfin | 677 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 265483 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Ministerio de Medio Ambiente y Medio Rural y Marino | |
dc.description.references | AGUIAR, F. C., & FERREIRA, M. T. (2005). Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environmental Conservation, 32(1), 30-41. doi:10.1017/s0376892905001992 | es_ES |
dc.description.references | Allen RG Pereira LS Raes D Smith M 1998 Crop evapotranspiration - guidelines for computing crop water requirements | es_ES |
dc.description.references | Altier LS Lowrance R Williams RG Inamdar SP Bosch DD Sheridan JM Hubbard RK Thomas DL 2002 Riparian ecosystem management model: simulator for ecological processes in riparian zones | es_ES |
dc.description.references | Amenu, G. G., & Kumar, P. (2008). A model for hydraulic redistribution incorporating coupled soil-root moisture transport. Hydrology and Earth System Sciences, 12(1), 55-74. doi:10.5194/hess-12-55-2008 | es_ES |
dc.description.references | Azami, K., Suzuki, H., & Toki, S. (2004). Changes in riparian vegetation communities below a large dam in a monsoonal region: Futase Dam, Japan. River Research and Applications, 20(5), 549-563. doi:10.1002/rra.763 | es_ES |
dc.description.references | Baird, K. J., & Maddock, T. (2005). Simulating riparian evapotranspiration: a new methodology and application for groundwater models. Journal of Hydrology, 312(1-4), 176-190. doi:10.1016/j.jhydrol.2005.02.014 | es_ES |
dc.description.references | Bendix, J. (1994). Scale, Direction, and Pattern in Riparian Vegetation-Environment Relationships. Annals of the Association of American Geographers, 84(4), 652-665. doi:10.1111/j.1467-8306.1994.tb01881.x | es_ES |
dc.description.references | Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. F. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92(12), 3058-3070. doi:10.1016/j.jenvman.2011.07.017 | es_ES |
dc.description.references | Brinson, M. M., & Verhoeven, J. (1999). Riparian forests. Maintaining Biodiversity in Forest Ecosystems, 265-299. doi:10.1017/cbo9780511613029.010 | es_ES |
dc.description.references | Brookes, C. ., Hooke, J. ., & Mant, J. (2000). Modelling vegetation interactions with channel flow in river valleys of the Mediterranean region. CATENA, 40(1), 93-118. doi:10.1016/s0341-8162(99)00065-x | es_ES |
dc.description.references | Brouwer C Goffeau A Heibloem M 1985 Irrigation Water Management: Training Manual No. 1-Introduction to Irrigation http://www.fao.org/docrep/R4082E/R4082E00.htm | es_ES |
dc.description.references | Butler, J. J., Kluitenberg, G. J., Whittemore, D. O., Loheide, S. P., Jin, W., Billinger, M. A., & Zhan, X. (2007). A field investigation of phreatophyte-induced fluctuations in the water table. Water Resources Research, 43(2). doi:10.1029/2005wr004627 | es_ES |
dc.description.references | CAMPBELL, G. S. (1974). A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA. Soil Science, 117(6), 311-314. doi:10.1097/00010694-197406000-00001 | es_ES |
dc.description.references | Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., & Schulze, E.-D. (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108(4), 583-595. doi:10.1007/bf00329030 | es_ES |
dc.description.references | Choi, S.-U., Yoon, B., & Woo, H. (2005). Effects of dam-induced flow regime change on downstream river morphology and vegetation cover in the Hwang River, Korea. River Research and Applications, 21(2-3), 315-325. doi:10.1002/rra.849 | es_ES |
dc.description.references | Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37-46. doi:10.1177/001316446002000104 | es_ES |
dc.description.references | Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213-220. doi:10.1037/h0026256 | es_ES |
dc.description.references | Cooper, A., Shine, T., McCann, T., & Tidane, D. A. (2006). An ecological basis for sustainable land use of Eastern Mauritanian wetlands. Journal of Arid Environments, 67(1), 116-141. doi:10.1016/j.jaridenv.2006.02.003 | es_ES |
dc.description.references | DAHM, C. N., CLEVERLY, J. R., ALLRED COONROD, J. E., THIBAULT, J. R., MCDONNELL, D. E., & GILROY, D. J. (2002). Evapotranspiration at the land/water interface in a semi-arid drainage basin. Freshwater Biology, 47(4), 831-843. doi:10.1046/j.1365-2427.2002.00917.x | es_ES |
dc.description.references | David, T. S., Henriques, M. O., Kurz-Besson, C., Nunes, J., Valente, F., Vaz, M., … David, J. S. (2007). Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiology, 27(6), 793-803. doi:10.1093/treephys/27.6.793 | es_ES |
dc.description.references | Eagleson, P. S. (2002). Ecohydrology. doi:10.1017/cbo9780511535680 | es_ES |
dc.description.references | Glenn, E. P., Neale, C. M. U., Hunsaker, D. J., & Nagler, P. L. (2011). Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrological Processes, 25(26), 4050-4062. doi:10.1002/hyp.8392 | es_ES |
dc.description.references | Glenz C 2005 Process-based, spatially-explicit modelling of riparian forest dynamics in Central Europe - tool for decision making in river restoration 10.5075/epfl-thesis-3223 | es_ES |
dc.description.references | González, E., González-Sanchis, M., Comín, F. A., & Muller, E. (2010). Hydrologic thresholds for riparian forest conservation in a regulated large Mediterranean river. River Research and Applications, 28(1), 71-80. doi:10.1002/rra.1436 | es_ES |
dc.description.references | Goodrich, D. (2000). Seasonal estimates of riparian evapotranspiration using remote and in situ measurements. Agricultural and Forest Meteorology, 105(1-3), 281-309. doi:10.1016/s0168-1923(00)00197-0 | es_ES |
dc.description.references | Horton, J. L., & Clark, J. L. (2001). Water table decline alters growth and survival of Salix gooddingii and Tamarix chinensis seedlings. Forest Ecology and Management, 140(2-3), 239-247. doi:10.1016/s0378-1127(00)00314-5 | es_ES |
dc.description.references | Horton, J. L., Kolb, T. E., & Hart, S. C. (2001). Responses of riparian trees to interannual variation in ground water depth in a semi-arid river basin. Plant, Cell and Environment, 24(3), 293-304. doi:10.1046/j.1365-3040.2001.00681.x | es_ES |
dc.description.references | Hupp, C. R., & Osterkamp, W. R. (1985). Bottomland Vegetation Distribution along Passage Creek, Virginia, in Relation to Fluvial Landforms. Ecology, 66(3), 670-681. doi:10.2307/1940528 | es_ES |
dc.description.references | Hupp, C. R., & Osterkamp, W. R. (1996). Riparian vegetation and fluvial geomorphic processes. Geomorphology, 14(4), 277-295. doi:10.1016/0169-555x(95)00042-4 | es_ES |
dc.description.references | S. P. Inamdar, J. M. Sheridan, R. G. Williams, D. D. Bosch, R. R. Lowrance, L. S. Altier, & D. L. Thomas. (1999). RIPARIAN ECOSYSTEM MANAGEMENT MODEL (REMM): I. TESTING OF THE HYDROLOGIC COMPONENT FOR A COASTAL PLAIN RIPARIAN SYSTEM. Transactions of the ASAE, 42(6), 1679-1690. doi:10.13031/2013.13332 | es_ES |
dc.description.references | Kellman, M., & Roulet, N. (1990). Nutrient Flux and Retention in a Tropical Sand-Dune Succession. The Journal of Ecology, 78(3), 664. doi:10.2307/2260891 | es_ES |
dc.description.references | Laio, F., Porporato, A., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 707-723. doi:10.1016/s0309-1708(01)00005-7 | es_ES |
dc.description.references | Lambers, H., Chapin, F. S., & Pons, T. L. (1998). Plant Physiological Ecology. doi:10.1007/978-1-4757-2855-2 | es_ES |
dc.description.references | Lambs, L. (2004). Interactions between groundwater and surface water at river banks and the confluence of rivers. Journal of Hydrology, 288(3-4), 312-326. doi:10.1016/j.jhydrol.2003.10.013 | es_ES |
dc.description.references | Lamontagne, S., Cook, P. G., O’Grady, A., & Eamus, D. (2005). Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). Journal of Hydrology, 310(1-4), 280-293. doi:10.1016/j.jhydrol.2005.01.009 | es_ES |
dc.description.references | Larcher, W. (2003). Physiological Plant Ecology. doi:10.1007/978-3-662-05214-3 | es_ES |
dc.description.references | Lautz, L. K. (2007). Estimating groundwater evapotranspiration rates using diurnal water-table fluctuations in a semi-arid riparian zone. Hydrogeology Journal, 16(3), 483-497. doi:10.1007/s10040-007-0239-0 | es_ES |
dc.description.references | Lavorel, S., McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution, 12(12), 474-478. doi:10.1016/s0169-5347(97)01219-6 | es_ES |
dc.description.references | Lee, J.-E., Oliveira, R. S., Dawson, T. E., & Fung, I. (2005). Root functioning modifies seasonal climate. Proceedings of the National Academy of Sciences, 102(49), 17576-17581. doi:10.1073/pnas.0508785102 | es_ES |
dc.description.references | Lite, S. J., & Stromberg, J. C. (2005). Surface water and ground-water thresholds for maintaining Populus–Salix forests, San Pedro River, Arizona. Biological Conservation, 125(2), 153-167. doi:10.1016/j.biocon.2005.01.020 | es_ES |
dc.description.references | Lite, S. J., Bagstad, K. J., & Stromberg, J. C. (2005). Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. Journal of Arid Environments, 63(4), 785-813. doi:10.1016/j.jaridenv.2005.03.026 | es_ES |
dc.description.references | Lowrance R Altier L Williams R Inambar S Bosch D Sheridan J Thomas D Hubbard R 1998 The riparian ecosystem management model: simulator for ecological processes in buffer systems 81 88 | es_ES |
dc.description.references | Mac Nish, R. (2000). Comparison of riparian evapotranspiration estimates based on a water balance approach and sap flow measurements. Agricultural and Forest Meteorology, 105(1-3), 271-279. doi:10.1016/s0168-1923(00)00196-9 | es_ES |
dc.description.references | Malanson, G. P. (1993). Riparian Landscapes. doi:10.1017/cbo9780511565434 | es_ES |
dc.description.references | Manel, S., Williams, H. C., & Ormerod, S. J. (2002). Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38(5), 921-931. doi:10.1046/j.1365-2664.2001.00647.x | es_ES |
dc.description.references | MERRITT, D. M., SCOTT, M. L., LeROY POFF, N., AUBLE, G. T., & LYTLE, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55(1), 206-225. doi:10.1111/j.1365-2427.2009.02206.x | es_ES |
dc.description.references | Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2010). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221(16), 1995-2002. doi:10.1016/j.ecolmodel.2010.04.017 | es_ES |
dc.description.references | Murillo J Rodríguez Pallarés M Andrés-Urrutia A Brufau P García-Navarro P 2008 A mathematical model for numerical simulation of shallow water flow: description and practical application of GUAD 2D 978-84-7653-074-0 | es_ES |
dc.description.references | Nagler, P. (2011). The role of remote sensing observations and models in hydrology: the science of evapotranspiration. Hydrological Processes, 25(26), 3977-3978. doi:10.1002/hyp.8436 | es_ES |
dc.description.references | Ocampo, C. J., Sivapalan, M., & Oldham, C. (2006). Hydrological connectivity of upland-riparian zones in agricultural catchments: Implications for runoff generation and nitrate transport. Journal of Hydrology, 331(3-4), 643-658. doi:10.1016/j.jhydrol.2006.06.010 | es_ES |
dc.description.references | Perona, P., Molnar, P., Savina, M., & Burlando, P. (2009). An observation-based stochastic model for sediment and vegetation dynamics in the floodplain of an Alpine braided river. Water Resources Research, 45(9). doi:10.1029/2008wr007550 | es_ES |
dc.description.references | Porporato, A., Laio, F., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 725-744. doi:10.1016/s0309-1708(01)00006-9 | es_ES |
dc.description.references | Quevedo, D. I., & Francés, F. (2008). A conceptual dynamic vegetation-soil model for arid and semiarid zones. Hydrology and Earth System Sciences, 12(5), 1175-1187. doi:10.5194/hess-12-1175-2008 | es_ES |
dc.description.references | Richards, L. A. (1931). CAPILLARY CONDUCTION OF LIQUIDS THROUGH POROUS MEDIUMS. Physics, 1(5), 318-333. doi:10.1063/1.1745010 | es_ES |
dc.description.references | RICHARDS, K., BRASINGTON, J., & HUGHES, F. (2002). Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshwater Biology, 47(4), 559-579. doi:10.1046/j.1365-2427.2002.00920.x | es_ES |
dc.description.references | Rodriguez-Iturbe, I., Porporato, A., Laio, F., & Ridolfi, L. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 695-705. doi:10.1016/s0309-1708(01)00004-5 | es_ES |
dc.description.references | Ryel, R., Caldwell, M., Yoder, C., Or, D., & Leffler, A. (2002). Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 130(2), 173-184. doi:10.1007/s004420100794 | es_ES |
dc.description.references | SALINAS, M. J., BLANCA, G., & ROMERO, A. T. (2000). Evaluating riparian vegetation in semi-arid Mediterranean watercourses in the south-eastern Iberian Peninsula. Environmental Conservation, 27(1), 24-35. doi:10.1017/s0376892900000047 | es_ES |
dc.description.references | Saxton, K. E., & Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70(5), 1569. doi:10.2136/sssaj2005.0117 | es_ES |
dc.description.references | Schaeffer SM Williams DG 1998 Transpiration of desert riparian forest canopies estimated from sap flux | es_ES |
dc.description.references | Schenk, H. J., & Jackson, R. B. (2002). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90(3), 480-494. doi:10.1046/j.1365-2745.2002.00682.x | es_ES |
dc.description.references | Schenk, H. J., & Jackson, R. B. (2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126(1-2), 129-140. doi:10.1016/j.geoderma.2004.11.018 | es_ES |
dc.description.references | Schilling, K. E., & Kiniry, J. R. (2007). Estimation of evapotranspiration by reed canarygrass using field observations and model simulations. Journal of Hydrology, 337(3-4), 356-363. doi:10.1016/j.jhydrol.2007.02.003 | es_ES |
dc.description.references | Schulze, E.-D., Mooney, H. A., Sala, O. E., Jobbagy, E., Buchmann, N., Bauer, G., … Ehleringer, J. R. (1996). Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia, 108(3), 503-511. doi:10.1007/bf00333727 | es_ES |
dc.description.references | Scott RL Goodrich DC Levick LR 2003 A GIS-based management tool to quantify riparian vegetation groundwater use 222 227 | es_ES |
dc.description.references | SCOTT, R. L., HUXMAN, T. E., WILLIAMS, D. G., & GOODRICH, D. C. (2006). Ecohydrological impacts of woody-plant encroachment: seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment. Global Change Biology, 12(2), 311-324. doi:10.1111/j.1365-2486.2005.01093.x | es_ES |
dc.description.references | Scott, R. (2000). The water use of two dominant vegetation communities in a semiarid riparian ecosystem. Agricultural and Forest Meteorology, 105(1-3), 241-256. doi:10.1016/s0168-1923(00)00181-7 | es_ES |
dc.description.references | Serrat-Capdevila, A., Scott, R. L., James Shuttleworth, W., & Valdés, J. B. (2011). Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system. Journal of Hydrology, 399(1-2), 1-11. doi:10.1016/j.jhydrol.2010.12.021 | es_ES |
dc.description.references | Snyder, K. (2000). Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agricultural and Forest Meteorology, 105(1-3), 227-240. doi:10.1016/s0168-1923(00)00193-3 | es_ES |
dc.description.references | Sparks, R. E. (1995). Need for Ecosystem Management of Large Rivers and Their Floodplains. BioScience, 45(3), 168-182. doi:10.2307/1312556 | es_ES |
dc.description.references | Sparovek, G., Beatriz Lima Ranieri, S., Gassner, A., Clerice De Maria, I., Schnug, E., Ferreira dos Santos, R., & Joubert, A. (2002). A conceptual framework for the definition of the optimal width of riparian forests. Agriculture, Ecosystems & Environment, 90(2), 169-175. doi:10.1016/s0167-8809(01)00195-5 | es_ES |
dc.description.references | Stave, J., Oba, G., Stenseth, N. C., & Nordal, I. (2005). Environmental gradients in the Turkwel riverine forest, Kenya: Hypotheses on dam-induced vegetation change. Forest Ecology and Management, 212(1-3), 184-198. doi:10.1016/j.foreco.2005.03.037 | es_ES |
dc.description.references | Stromberg, J. C. (2001). Restoration of riparian vegetation in the south-western United States: importance of flow regimes and fluvial dynamism. Journal of Arid Environments, 49(1), 17-34. doi:10.1006/jare.2001.0833 | es_ES |
dc.description.references | Stromberg, J. C., Tiller, R., & Richter, B. (1996). Effects of Groundwater Decline on Riparian Vegetation of Semiarid Regions: The San Pedro, Arizona. Ecological Applications, 6(1), 113-131. doi:10.2307/2269558 | es_ES |
dc.description.references | Stromberg, J. C., Wilkins, S. D., & Tress, J. A. (1993). Vegetation-Hydrology Models: Implications for Management of Prosopis Velutina (Velvet Mesquite) Riparian Ecosystems. Ecological Applications, 3(2), 307-314. doi:10.2307/1941833 | es_ES |
dc.description.references | Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A.-M., Muller, E., & D�camps, H. (2000). Impacts of riparian vegetation on hydrological processes. Hydrological Processes, 14(16-17), 2959-2976. doi:10.1002/1099-1085(200011/12)14:16/17<2959::aid-hyp129>3.0.co;2-b | es_ES |
dc.description.references | Tabacchi, E., Planty-Tabacchi, A.-M., Roques, L., & Nadal, E. (2005). Seed inputs in riparian zones: implications for plant invasion. River Research and Applications, 21(2-3), 299-313. doi:10.1002/rra.848 | es_ES |
dc.description.references | Vidon, P. G. F., & Hill, A. R. (2004). Landscape controls on the hydrology of stream riparian zones. Journal of Hydrology, 292(1-4), 210-228. doi:10.1016/j.jhydrol.2004.01.005 | es_ES |
dc.description.references | Webb, R. H., & Leake, S. A. (2006). Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States. Journal of Hydrology, 320(3-4), 302-323. doi:10.1016/j.jhydrol.2005.07.022 | es_ES |
dc.description.references | Wild A 1992 Condiciones del suelo y desarrollo de las plantas según Russell | es_ES |
dc.description.references | Zheng, Z., & Wang, G. (2007). Modeling the dynamic root water uptake and its hydrological impact at the Reserva Jaru site in Amazonia. Journal of Geophysical Research: Biogeosciences, 112(G4), n/a-n/a. doi:10.1029/2007jg000413 | es_ES |