- -

HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds

Mostrar el registro completo del ítem

Wu, C.; Feng, J.; Wang, R.; Liu, H.; Yang, H.; Rodríguez Egea, PL.; Qin, H.... (2012). HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds. PLoS ONE. 7(4):1-13. https://doi.org/10.1371/journal.pone.0035764

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45323

Ficheros en el ítem

Metadatos del ítem

Título: HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds
Autor: Wu, Chongming Feng, Juanjuan Wang, Ran Liu, Hong Yang, Huixia Rodríguez Egea, Pedro Luís Qin, Huanju Liu, Xin Wang, Daowen
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
In this work, we conducted functional analysis of Arabidopsis HRS1 gene in order to provide new insights into the mechanisms governing seed germination. Compared with wild type (WT) control, HRS1 knockout mutant (hrs1-1) ...[+]
Palabras clave: MEMBRANE H+-ATPASE , PROTEIN PHOSPHATASE 2C , TRANSCRIPTION FACTOR , ELONGATION GROWTH , ROOT-GROWTH , THALIANA , ABA , DORMANCY , INHIBITION , GENE
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0035764
Editorial:
Public Library of Science
Versión del editor: http://dx.doi.org/10.1371/journal.pone.0035764
Código del Proyecto:
info:eu-repo/grantAgreement/NSFC//30821061/
Agradecimientos:
This work was supported by a grant from the National Natural Science Foundation of China (30821061). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.[+]
Tipo: Artículo

References

Bewley, J. D. (1997). Seed Germination and Dormancy. The Plant Cell, 1055-1066. doi:10.1105/tpc.9.7.1055

Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523. doi:10.1111/j.1469-8137.2006.01787.x

Holdsworth, M. J., Bentsink, L., & Soppe, W. J. J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist, 179(1), 33-54. doi:10.1111/j.1469-8137.2008.02437.x [+]
Bewley, J. D. (1997). Seed Germination and Dormancy. The Plant Cell, 1055-1066. doi:10.1105/tpc.9.7.1055

Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523. doi:10.1111/j.1469-8137.2006.01787.x

Holdsworth, M. J., Bentsink, L., & Soppe, W. J. J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist, 179(1), 33-54. doi:10.1111/j.1469-8137.2008.02437.x

Penfield, S., & King, J. (2009). Towards a systems biology approach to understanding seed dormancy and germination. Proceedings of the Royal Society B: Biological Sciences, 276(1673), 3561-3569. doi:10.1098/rspb.2009.0592

Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N., … Nambara, E. (2006). CYP707A1 and CYP707A2, Which Encode Abscisic Acid 8′-Hydroxylases, Are Indispensable for Proper Control of Seed Dormancy and Germination in Arabidopsis. Plant Physiology, 141(1), 97-107. doi:10.1104/pp.106.079475

Penfield, S., Li, Y., Gilday, A. D., Graham, S., & Graham, I. A. (2006). Arabidopsis ABA INSENSITIVE4 Regulates Lipid Mobilization in the Embryo and Reveals Repression of Seed Germination by the Endosperm. The Plant Cell, 18(8), 1887-1899. doi:10.1105/tpc.106.041277

Piskurewicz, U., Jikumaru, Y., Kinoshita, N., Nambara, E., Kamiya, Y., & Lopez-Molina, L. (2008). The Gibberellic Acid Signaling Repressor RGL2 Inhibits Arabidopsis Seed Germination by Stimulating Abscisic Acid Synthesis and ABI5 Activity. The Plant Cell, 20(10), 2729-2745. doi:10.1105/tpc.108.061515

Weitbrecht, K., Müller, K., & Leubner-Metzger, G. (2011). First off the mark: early seed germination. Journal of Experimental Botany, 62(10), 3289-3309. doi:10.1093/jxb/err030

Nambara, E., Hayama, R., Tsuchiya, Y., Nishimura, M., Kawaide, H., Kamiya, Y., & Naito, S. (2000). The Role of ABI3 and FUS3 Loci in Arabidopsis thaliana on Phase Transition from Late Embryo Development to Germination. Developmental Biology, 220(2), 412-423. doi:10.1006/dbio.2000.9632

Lopez-Molina, L., Mongrand, S., McLachlin, D. T., Chait, B. T., & Chua, N.-H. (2002). ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. The Plant Journal, 32(3), 317-328. doi:10.1046/j.1365-313x.2002.01430.x

Finkelstein, R. R., Gampala, S. S. L., & Rock, C. D. (2002). Abscisic Acid Signaling in Seeds and Seedlings. The Plant Cell, 14(suppl 1), S15-S45. doi:10.1105/tpc.010441

Brocard, I. M., Lynch, T. J., & Finkelstein, R. R. (2002). Regulation and Role of the Arabidopsis Abscisic Acid-Insensitive 5 Gene in Abscisic Acid, Sugar, and Stress Response. Plant Physiology, 129(4), 1533-1543. doi:10.1104/pp.005793

Brocard-Gifford, I. M., Lynch, T. J., & Finkelstein, R. R. (2003). Regulatory Networks in Seeds Integrating Developmental, Abscisic Acid, Sugar, and Light Signaling. Plant Physiology, 131(1), 78-92. doi:10.1104/pp.011916

Hubbard, K. E., Nishimura, N., Hitomi, K., Getzoff, E. D., & Schroeder, J. I. (2010). Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes & Development, 24(16), 1695-1708. doi:10.1101/gad.1953910

Gosti, F., Beaudoin, N., Serizet, C., Webb, A. A. R., Vartanian, N., & Giraudat, J. (1999). ABI1 Protein Phosphatase 2C Is a Negative Regulator of Abscisic Acid Signaling. The Plant Cell, 11(10), 1897-1909. doi:10.1105/tpc.11.10.1897

Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A., & Giraudat, J. (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal, 25(3), 295-303. doi:10.1046/j.1365-313x.2001.00965.x

Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M. P., Nicolas, C., Lorenzo, O., & Rodriguez, P. L. (2003). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2CHAB1reveal its role as a negative regulator of abscisic acid signalling. The Plant Journal, 37(3), 354-369. doi:10.1046/j.1365-313x.2003.01966.x

Saez, A., Robert, N., Maktabi, M. H., Schroeder, J. I., Serrano, R., & Rodriguez, P. L. (2006). Enhancement of Abscisic Acid Sensitivity and Reduction of Water Consumption in Arabidopsis by Combined Inactivation of the Protein Phosphatases Type 2C ABI1 and HAB1. Plant Physiology, 141(4), 1389-1399. doi:10.1104/pp.106.081018

Nishimura, N., Yoshida, T., Kitahata, N., Asami, T., Shinozaki, K., & Hirayama, T. (2007). ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. The Plant Journal, 50(6), 935-949. doi:10.1111/j.1365-313x.2007.03107.x

Rubio, S., Rodrigues, A., Saez, A., Dizon, M. B., Galle, A., Kim, T.-H., … Rodriguez, P. L. (2009). Triple Loss of Function of Protein Phosphatases Type 2C Leads to Partial Constitutive Response to Endogenous Abscisic Acid. Plant Physiology, 150(3), 1345-1355. doi:10.1104/pp.109.137174

Lopez-Molina, L., Mongrand, S., & Chua, N.-H. (2001). A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proceedings of the National Academy of Sciences, 98(8), 4782-4787. doi:10.1073/pnas.081594298

Belin, C., Megies, C., Hauserová, E., & Lopez-Molina, L. (2009). Abscisic Acid Represses Growth of the Arabidopsis Embryonic Axis after Germination by Enhancing Auxin Signaling. The Plant Cell, 21(8), 2253-2268. doi:10.1105/tpc.109.067702

Kinoshita, N., Berr, A., Belin, C., Chappuis, R., Nishizawa, N. K., & Lopez-Molina, L. (2009). Identification of growth insensitive to ABA3 (gia3), a Recessive Mutation Affecting ABA Signaling for the Control of Early Post-Germination Growth in Arabidopsis thaliana. Plant and Cell Physiology, 51(2), 239-251. doi:10.1093/pcp/pcp183

Linkies, A., Müller, K., Morris, K., Turečková, V., Wenk, M., Cadman, C. S. C., … Leubner-Metzger, G. (2009). Ethylene Interacts with Abscisic Acid to Regulate Endosperm Rupture during Germination: A Comparative Approach Using Lepidium sativum and Arabidopsis thaliana. The Plant Cell, 21(12), 3803-3822. doi:10.1105/tpc.109.070201

Linkies, A., & Leubner-Metzger, G. (2011). Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Reports, 31(2), 253-270. doi:10.1007/s00299-011-1180-1

Sliwinska, E., Bassel, G. W., & Bewley, J. D. (2009). Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl. Journal of Experimental Botany, 60(12), 3587-3594. doi:10.1093/jxb/erp203

Bove, J., Jullien, M., & Grappin, P. (2001). Genome Biology, 3(1), reviews1002.1. doi:10.1186/gb-2001-3-1-reviews1002

Enríquez-Arredondo, C., Sánchez-Nieto, S., Rendón-Huerta, E., González-Halphen, D., Gavilanes-Ruíz, M., & Díaz-Pontones, D. (2005). The plasma membrane H+-ATPase of maize embryos localizes in regions that are critical during the onset of germination. Plant Science, 169(1), 11-19. doi:10.1016/j.plantsci.2005.01.021

Wijngaard, P. W. J., Sinnige, M. P., Roobeek, I., Reumer, A., Schoonheim, P. J., Mol, J. N. M., … De Boer, A. H. (2004). Abscisic acid and 14-3-3 proteins control K+ channel activity in barley embryonic root. The Plant Journal, 41(1), 43-55. doi:10.1111/j.1365-313x.2004.02273.x

Guo, J., Wang, J., Xi, L., Huang, W.-D., Liang, J., & Chen, J.-G. (2009). RACK1 is a negative regulator of ABA responses in Arabidopsis. Journal of Experimental Botany, 60(13), 3819-3833. doi:10.1093/jxb/erp221

Drechsel, G., Raab, S., & Hoth, S. (2010). Arabidopsis zinc-finger protein 2 is a negative regulator of ABA signaling during seed germination. Journal of Plant Physiology, 167(16), 1418-1421. doi:10.1016/j.jplph.2010.05.010

Xi, W., Liu, C., Hou, X., & Yu, H. (2010). MOTHER OF FT AND TFL1 Regulates Seed Germination through a Negative Feedback Loop Modulating ABA Signaling in Arabidopsis. The Plant Cell, 22(6), 1733-1748. doi:10.1105/tpc.109.073072

Liu, H., Yang, H., Wu, C., Feng, J., Liu, X., Qin, H., & Wang, D. (2009). OverexpressingHRS1Confers Hypersensitivity to Low Phosphate-Elicited Inhibition of Primary Root Growth inArabidopsis thaliana. Journal of Integrative Plant Biology, 51(4), 382-392. doi:10.1111/j.1744-7909.2009.00819.x

Mito, T., Seki, M., Shinozaki, K., Ohme-Takagi, M., & Matsui, K. (2010). Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice. Plant Biotechnology Journal, 9(7), 736-746. doi:10.1111/j.1467-7652.2010.00578.x

TIMSON, J. (1965). New Method of Recording Germination Data. Nature, 207(4993), 216-217. doi:10.1038/207216a0

Giraudat, J., Hauge, B. M., Valon, C., Smalle, J., Parcy, F., & Goodman, H. M. (1992). Isolation of the Arabidopsis ABI3 gene by positional cloning. The Plant Cell, 4(10), 1251-1261. doi:10.1105/tpc.4.10.1251

Finkelstein, R. R., Li Wang, M., Lynch, T. J., Rao, S., & Goodman, H. M. (1998). The Arabidopsis Abscisic Acid Response Locus ABI4 Encodes an APETALA2 Domain Protein. The Plant Cell, 10(6), 1043-1054. doi:10.1105/tpc.10.6.1043

Finkelstein, R. R., & Lynch, T. J. (2000). The Arabidopsis Abscisic Acid Response Gene ABI5 Encodes a Basic Leucine Zipper Transcription Factor. The Plant Cell, 12(4), 599-609. doi:10.1105/tpc.12.4.599

Taylor, N. J., Hills, P. N., & van Staden, J. (2007). Cell division versus cell elongation: The control of radicle elongation during thermoinhibition of Tagetes minuta achenes. Journal of Plant Physiology, 164(12), 1612-1625. doi:10.1016/j.jplph.2006.11.008

O’Neill, S. D., & Spanswick, R. M. (1984). Effects of Vanadate on the Plasma Membrane ATPase of Red Beet and Corn. Plant Physiology, 75(3), 586-591. doi:10.1104/pp.75.3.586

Mesenko, M. M., & Ivanov, V. B. (2005). The Effects of H+-ATPase Activator and Inhibitors on Cell Growth in the Maize Root. Russian Journal of Plant Physiology, 52(4), 497-503. doi:10.1007/s11183-005-0073-y

Johansson, F., Sommarin, M., & Larsson, C. (1993). Fusicoccin Activates the Plasma Membrane H + -ATPase by a Mechanism Involving the C-Terminal Inhibitory Domain. The Plant Cell, 5(3), 321. doi:10.2307/3869599

Hager, A. (2003). Role of the plasma membrane H + -ATPase in auxin-induced elongation growth: historical and new aspects. Journal of Plant Research, 116(6), 483-505. doi:10.1007/s10265-003-0110-x

Roelfsema, M. R. G., Staal, M., & Prins, H. B. A. (1998). Blue light-induced apoplastic acidification of Arabidopsis thaliana guard cells: Inhibition by ABA is mediated through protein phosphatases. Physiologia Plantarum, 103(4), 466-474. doi:10.1034/j.1399-3054.1998.1030404.x

Zhang, X., Wang, H., Takemiya, A., Song, C., Kinoshita, T., & Shimazaki, K. (2004). Inhibition of Blue Light-Dependent H+ Pumping by Abscisic Acid through Hydrogen Peroxide-Induced Dephosphorylation of the Plasma Membrane H+-ATPase in Guard Cell Protoplasts. Plant Physiology, 136(4), 4150-4158. doi:10.1104/pp.104.046573

Liu, P.-P., Montgomery, T. A., Fahlgren, N., Kasschau, K. D., Nonogaki, H., & Carrington, J. C. (2007). Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. The Plant Journal, 52(1), 133-146. doi:10.1111/j.1365-313x.2007.03218.x

Müller, K., Linkies, A., Vreeburg, R. A. M., Fry, S. C., Krieger-Liszkay, A., & Leubner-Metzger, G. (2009). In Vivo Cell Wall Loosening by Hydroxyl Radicals during Cress Seed Germination and Elongation Growth. Plant Physiology, 150(4), 1855-1865. doi:10.1104/pp.109.139204

Graeber, K., Linkies, A., Müller, K., Wunchova, A., Rott, A., & Leubner-Metzger, G. (2009). Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Molecular Biology, 73(1-2), 67-87. doi:10.1007/s11103-009-9583-x

Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0

Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x

Yang, H., Liu, H., Li, G., Feng, J., Qin, H., Liu, X., … Wang, D. (2009). Reduction of root flavonoid level and its potential involvement in lateral root emergence in Arabidopsis thaliana grown under low phosphate supply. Functional Plant Biology, 36(6), 564. doi:10.1071/fp08283

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262

Qin, C., Qian, W., Wang, W., Wu, Y., Yu, C., Jiang, X., … Wu, P. (2008). GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 105(47), 18308-18313. doi:10.1073/pnas.0806168105

Yan, F., Feuerle, R., Schäffer, S., Fortmeier, H., & Schubert, S. (1998). Adaptation of Active Proton Pumping and Plasmalemma ATPase Activity of Corn Roots to Low Root Medium pH. Plant Physiology, 117(1), 311-319. doi:10.1104/pp.117.1.311

Sveinsdóttir, H., Yan, F., Zhu, Y., Peiter-Volk, T., & Schubert, S. (2009). Seed ageing-induced inhibition of germination and post-germination root growth is related to lower activity of plasma membrane H+-ATPase in maize roots. Journal of Plant Physiology, 166(2), 128-135. doi:10.1016/j.jplph.2008.01.012

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem