- -

HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wu, Chongming es_ES
dc.contributor.author Feng, Juanjuan es_ES
dc.contributor.author Wang, Ran es_ES
dc.contributor.author Liu, Hong es_ES
dc.contributor.author Yang, Huixia es_ES
dc.contributor.author Rodríguez Egea, Pedro Luís es_ES
dc.contributor.author Qin, Huanju es_ES
dc.contributor.author Liu, Xin es_ES
dc.contributor.author Wang, Daowen es_ES
dc.date.accessioned 2014-12-10T18:41:09Z
dc.date.available 2014-12-10T18:41:09Z
dc.date.issued 2012-04-24
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/45323
dc.description.abstract In this work, we conducted functional analysis of Arabidopsis HRS1 gene in order to provide new insights into the mechanisms governing seed germination. Compared with wild type (WT) control, HRS1 knockout mutant (hrs1-1) exhibited significant germination delays on either normal medium or those supplemented with abscisic acid (ABA) or sodium chloride (NaCl), with the magnitude of the delay being substantially larger on the latter media. The hypersensitivity of hrs1-1 germination to ABA and NaCl required ABI3, ABI4 and ABI5, and was aggravated in the double mutant hrs1-1abi1-2 and triple mutant hrs1-1hab1-1abi1-2, indicating that HRS1 acts as a negative regulator of ABA signaling during seed germination. Consistent with this notion, HRS1 expression was found in the embryo axis, and was regulated both temporally and spatially, during seed germination. Further analysis showed that the delay of hrs1-1 germination under normal conditions was associated with reduction in the elongation of the cells located in the lower hypocotyl (LH) and transition zone (TZ) of embryo axis. Interestingly, the germination rate of hrs1-1 was more severely reduced by the inhibitor of cell elongation, and more significantly decreased by the suppressors of plasmalemma H+-ATPase activity, than that of WT control. The plasmalemma H+-ATPase activity in the germinating seeds of hrs1-1 was substantially lower than that exhibited by WT control, and fusicoccin, an activator of this pump, corrected the transient germination delay of hrs1-1. Together, our data suggest that HRS1 may be needed for suppressing ABA signaling in germinating embryo axis, which promotes the timely germination of Arabidopsis seeds probably by facilitating the proper function of plasmalemma H+-ATPase and the efficient elongation of LH and TZ cells. es_ES
dc.description.sponsorship This work was supported by a grant from the National Natural Science Foundation of China (30821061). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject MEMBRANE H+-ATPASE es_ES
dc.subject PROTEIN PHOSPHATASE 2C es_ES
dc.subject TRANSCRIPTION FACTOR es_ES
dc.subject ELONGATION GROWTH es_ES
dc.subject ROOT-GROWTH es_ES
dc.subject THALIANA es_ES
dc.subject ABA es_ES
dc.subject DORMANCY es_ES
dc.subject INHIBITION es_ES
dc.subject GENE es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0035764
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//30821061/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Wu, C.; Feng, J.; Wang, R.; Liu, H.; Yang, H.; Rodríguez Egea, PL.; Qin, H.... (2012). HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds. PLoS ONE. 7(4):1-13. https://doi.org/10.1371/journal.pone.0035764 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.pone.0035764 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 232900
dc.identifier.pmid 22545134 en_EN
dc.identifier.pmcid PMC3335793 en_EN
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.description.references Bewley, J. D. (1997). Seed Germination and Dormancy. The Plant Cell, 1055-1066. doi:10.1105/tpc.9.7.1055 es_ES
dc.description.references Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523. doi:10.1111/j.1469-8137.2006.01787.x es_ES
dc.description.references Holdsworth, M. J., Bentsink, L., & Soppe, W. J. J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist, 179(1), 33-54. doi:10.1111/j.1469-8137.2008.02437.x es_ES
dc.description.references Penfield, S., & King, J. (2009). Towards a systems biology approach to understanding seed dormancy and germination. Proceedings of the Royal Society B: Biological Sciences, 276(1673), 3561-3569. doi:10.1098/rspb.2009.0592 es_ES
dc.description.references Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N., … Nambara, E. (2006). CYP707A1 and CYP707A2, Which Encode Abscisic Acid 8′-Hydroxylases, Are Indispensable for Proper Control of Seed Dormancy and Germination in Arabidopsis. Plant Physiology, 141(1), 97-107. doi:10.1104/pp.106.079475 es_ES
dc.description.references Penfield, S., Li, Y., Gilday, A. D., Graham, S., & Graham, I. A. (2006). Arabidopsis ABA INSENSITIVE4 Regulates Lipid Mobilization in the Embryo and Reveals Repression of Seed Germination by the Endosperm. The Plant Cell, 18(8), 1887-1899. doi:10.1105/tpc.106.041277 es_ES
dc.description.references Piskurewicz, U., Jikumaru, Y., Kinoshita, N., Nambara, E., Kamiya, Y., & Lopez-Molina, L. (2008). The Gibberellic Acid Signaling Repressor RGL2 Inhibits Arabidopsis Seed Germination by Stimulating Abscisic Acid Synthesis and ABI5 Activity. The Plant Cell, 20(10), 2729-2745. doi:10.1105/tpc.108.061515 es_ES
dc.description.references Weitbrecht, K., Müller, K., & Leubner-Metzger, G. (2011). First off the mark: early seed germination. Journal of Experimental Botany, 62(10), 3289-3309. doi:10.1093/jxb/err030 es_ES
dc.description.references Nambara, E., Hayama, R., Tsuchiya, Y., Nishimura, M., Kawaide, H., Kamiya, Y., & Naito, S. (2000). The Role of ABI3 and FUS3 Loci in Arabidopsis thaliana on Phase Transition from Late Embryo Development to Germination. Developmental Biology, 220(2), 412-423. doi:10.1006/dbio.2000.9632 es_ES
dc.description.references Lopez-Molina, L., Mongrand, S., McLachlin, D. T., Chait, B. T., & Chua, N.-H. (2002). ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. The Plant Journal, 32(3), 317-328. doi:10.1046/j.1365-313x.2002.01430.x es_ES
dc.description.references Finkelstein, R. R., Gampala, S. S. L., & Rock, C. D. (2002). Abscisic Acid Signaling in Seeds and Seedlings. The Plant Cell, 14(suppl 1), S15-S45. doi:10.1105/tpc.010441 es_ES
dc.description.references Brocard, I. M., Lynch, T. J., & Finkelstein, R. R. (2002). Regulation and Role of the Arabidopsis Abscisic Acid-Insensitive 5 Gene in Abscisic Acid, Sugar, and Stress Response. Plant Physiology, 129(4), 1533-1543. doi:10.1104/pp.005793 es_ES
dc.description.references Brocard-Gifford, I. M., Lynch, T. J., & Finkelstein, R. R. (2003). Regulatory Networks in Seeds Integrating Developmental, Abscisic Acid, Sugar, and Light Signaling. Plant Physiology, 131(1), 78-92. doi:10.1104/pp.011916 es_ES
dc.description.references Hubbard, K. E., Nishimura, N., Hitomi, K., Getzoff, E. D., & Schroeder, J. I. (2010). Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes & Development, 24(16), 1695-1708. doi:10.1101/gad.1953910 es_ES
dc.description.references Gosti, F., Beaudoin, N., Serizet, C., Webb, A. A. R., Vartanian, N., & Giraudat, J. (1999). ABI1 Protein Phosphatase 2C Is a Negative Regulator of Abscisic Acid Signaling. The Plant Cell, 11(10), 1897-1909. doi:10.1105/tpc.11.10.1897 es_ES
dc.description.references Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A., & Giraudat, J. (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal, 25(3), 295-303. doi:10.1046/j.1365-313x.2001.00965.x es_ES
dc.description.references Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M. P., Nicolas, C., Lorenzo, O., & Rodriguez, P. L. (2003). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2CHAB1reveal its role as a negative regulator of abscisic acid signalling. The Plant Journal, 37(3), 354-369. doi:10.1046/j.1365-313x.2003.01966.x es_ES
dc.description.references Saez, A., Robert, N., Maktabi, M. H., Schroeder, J. I., Serrano, R., & Rodriguez, P. L. (2006). Enhancement of Abscisic Acid Sensitivity and Reduction of Water Consumption in Arabidopsis by Combined Inactivation of the Protein Phosphatases Type 2C ABI1 and HAB1. Plant Physiology, 141(4), 1389-1399. doi:10.1104/pp.106.081018 es_ES
dc.description.references Nishimura, N., Yoshida, T., Kitahata, N., Asami, T., Shinozaki, K., & Hirayama, T. (2007). ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. The Plant Journal, 50(6), 935-949. doi:10.1111/j.1365-313x.2007.03107.x es_ES
dc.description.references Rubio, S., Rodrigues, A., Saez, A., Dizon, M. B., Galle, A., Kim, T.-H., … Rodriguez, P. L. (2009). Triple Loss of Function of Protein Phosphatases Type 2C Leads to Partial Constitutive Response to Endogenous Abscisic Acid. Plant Physiology, 150(3), 1345-1355. doi:10.1104/pp.109.137174 es_ES
dc.description.references Lopez-Molina, L., Mongrand, S., & Chua, N.-H. (2001). A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proceedings of the National Academy of Sciences, 98(8), 4782-4787. doi:10.1073/pnas.081594298 es_ES
dc.description.references Belin, C., Megies, C., Hauserová, E., & Lopez-Molina, L. (2009). Abscisic Acid Represses Growth of the Arabidopsis Embryonic Axis after Germination by Enhancing Auxin Signaling. The Plant Cell, 21(8), 2253-2268. doi:10.1105/tpc.109.067702 es_ES
dc.description.references Kinoshita, N., Berr, A., Belin, C., Chappuis, R., Nishizawa, N. K., & Lopez-Molina, L. (2009). Identification of growth insensitive to ABA3 (gia3), a Recessive Mutation Affecting ABA Signaling for the Control of Early Post-Germination Growth in Arabidopsis thaliana. Plant and Cell Physiology, 51(2), 239-251. doi:10.1093/pcp/pcp183 es_ES
dc.description.references Linkies, A., Müller, K., Morris, K., Turečková, V., Wenk, M., Cadman, C. S. C., … Leubner-Metzger, G. (2009). Ethylene Interacts with Abscisic Acid to Regulate Endosperm Rupture during Germination: A Comparative Approach Using Lepidium sativum and Arabidopsis thaliana. The Plant Cell, 21(12), 3803-3822. doi:10.1105/tpc.109.070201 es_ES
dc.description.references Linkies, A., & Leubner-Metzger, G. (2011). Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Reports, 31(2), 253-270. doi:10.1007/s00299-011-1180-1 es_ES
dc.description.references Sliwinska, E., Bassel, G. W., & Bewley, J. D. (2009). Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl. Journal of Experimental Botany, 60(12), 3587-3594. doi:10.1093/jxb/erp203 es_ES
dc.description.references Bove, J., Jullien, M., & Grappin, P. (2001). Genome Biology, 3(1), reviews1002.1. doi:10.1186/gb-2001-3-1-reviews1002 es_ES
dc.description.references Enríquez-Arredondo, C., Sánchez-Nieto, S., Rendón-Huerta, E., González-Halphen, D., Gavilanes-Ruíz, M., & Díaz-Pontones, D. (2005). The plasma membrane H+-ATPase of maize embryos localizes in regions that are critical during the onset of germination. Plant Science, 169(1), 11-19. doi:10.1016/j.plantsci.2005.01.021 es_ES
dc.description.references Wijngaard, P. W. J., Sinnige, M. P., Roobeek, I., Reumer, A., Schoonheim, P. J., Mol, J. N. M., … De Boer, A. H. (2004). Abscisic acid and 14-3-3 proteins control K+ channel activity in barley embryonic root. The Plant Journal, 41(1), 43-55. doi:10.1111/j.1365-313x.2004.02273.x es_ES
dc.description.references Guo, J., Wang, J., Xi, L., Huang, W.-D., Liang, J., & Chen, J.-G. (2009). RACK1 is a negative regulator of ABA responses in Arabidopsis. Journal of Experimental Botany, 60(13), 3819-3833. doi:10.1093/jxb/erp221 es_ES
dc.description.references Drechsel, G., Raab, S., & Hoth, S. (2010). Arabidopsis zinc-finger protein 2 is a negative regulator of ABA signaling during seed germination. Journal of Plant Physiology, 167(16), 1418-1421. doi:10.1016/j.jplph.2010.05.010 es_ES
dc.description.references Xi, W., Liu, C., Hou, X., & Yu, H. (2010). MOTHER OF FT AND TFL1 Regulates Seed Germination through a Negative Feedback Loop Modulating ABA Signaling in Arabidopsis. The Plant Cell, 22(6), 1733-1748. doi:10.1105/tpc.109.073072 es_ES
dc.description.references Liu, H., Yang, H., Wu, C., Feng, J., Liu, X., Qin, H., & Wang, D. (2009). OverexpressingHRS1Confers Hypersensitivity to Low Phosphate-Elicited Inhibition of Primary Root Growth inArabidopsis thaliana. Journal of Integrative Plant Biology, 51(4), 382-392. doi:10.1111/j.1744-7909.2009.00819.x es_ES
dc.description.references Mito, T., Seki, M., Shinozaki, K., Ohme-Takagi, M., & Matsui, K. (2010). Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice. Plant Biotechnology Journal, 9(7), 736-746. doi:10.1111/j.1467-7652.2010.00578.x es_ES
dc.description.references TIMSON, J. (1965). New Method of Recording Germination Data. Nature, 207(4993), 216-217. doi:10.1038/207216a0 es_ES
dc.description.references Giraudat, J., Hauge, B. M., Valon, C., Smalle, J., Parcy, F., & Goodman, H. M. (1992). Isolation of the Arabidopsis ABI3 gene by positional cloning. The Plant Cell, 4(10), 1251-1261. doi:10.1105/tpc.4.10.1251 es_ES
dc.description.references Finkelstein, R. R., Li Wang, M., Lynch, T. J., Rao, S., & Goodman, H. M. (1998). The Arabidopsis Abscisic Acid Response Locus ABI4 Encodes an APETALA2 Domain Protein. The Plant Cell, 10(6), 1043-1054. doi:10.1105/tpc.10.6.1043 es_ES
dc.description.references Finkelstein, R. R., & Lynch, T. J. (2000). The Arabidopsis Abscisic Acid Response Gene ABI5 Encodes a Basic Leucine Zipper Transcription Factor. The Plant Cell, 12(4), 599-609. doi:10.1105/tpc.12.4.599 es_ES
dc.description.references Taylor, N. J., Hills, P. N., & van Staden, J. (2007). Cell division versus cell elongation: The control of radicle elongation during thermoinhibition of Tagetes minuta achenes. Journal of Plant Physiology, 164(12), 1612-1625. doi:10.1016/j.jplph.2006.11.008 es_ES
dc.description.references O’Neill, S. D., & Spanswick, R. M. (1984). Effects of Vanadate on the Plasma Membrane ATPase of Red Beet and Corn. Plant Physiology, 75(3), 586-591. doi:10.1104/pp.75.3.586 es_ES
dc.description.references Mesenko, M. M., & Ivanov, V. B. (2005). The Effects of H+-ATPase Activator and Inhibitors on Cell Growth in the Maize Root. Russian Journal of Plant Physiology, 52(4), 497-503. doi:10.1007/s11183-005-0073-y es_ES
dc.description.references Johansson, F., Sommarin, M., & Larsson, C. (1993). Fusicoccin Activates the Plasma Membrane H + -ATPase by a Mechanism Involving the C-Terminal Inhibitory Domain. The Plant Cell, 5(3), 321. doi:10.2307/3869599 es_ES
dc.description.references Hager, A. (2003). Role of the plasma membrane H + -ATPase in auxin-induced elongation growth: historical and new aspects. Journal of Plant Research, 116(6), 483-505. doi:10.1007/s10265-003-0110-x es_ES
dc.description.references Roelfsema, M. R. G., Staal, M., & Prins, H. B. A. (1998). Blue light-induced apoplastic acidification of Arabidopsis thaliana guard cells: Inhibition by ABA is mediated through protein phosphatases. Physiologia Plantarum, 103(4), 466-474. doi:10.1034/j.1399-3054.1998.1030404.x es_ES
dc.description.references Zhang, X., Wang, H., Takemiya, A., Song, C., Kinoshita, T., & Shimazaki, K. (2004). Inhibition of Blue Light-Dependent H+ Pumping by Abscisic Acid through Hydrogen Peroxide-Induced Dephosphorylation of the Plasma Membrane H+-ATPase in Guard Cell Protoplasts. Plant Physiology, 136(4), 4150-4158. doi:10.1104/pp.104.046573 es_ES
dc.description.references Liu, P.-P., Montgomery, T. A., Fahlgren, N., Kasschau, K. D., Nonogaki, H., & Carrington, J. C. (2007). Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. The Plant Journal, 52(1), 133-146. doi:10.1111/j.1365-313x.2007.03218.x es_ES
dc.description.references Müller, K., Linkies, A., Vreeburg, R. A. M., Fry, S. C., Krieger-Liszkay, A., & Leubner-Metzger, G. (2009). In Vivo Cell Wall Loosening by Hydroxyl Radicals during Cress Seed Germination and Elongation Growth. Plant Physiology, 150(4), 1855-1865. doi:10.1104/pp.109.139204 es_ES
dc.description.references Graeber, K., Linkies, A., Müller, K., Wunchova, A., Rott, A., & Leubner-Metzger, G. (2009). Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Molecular Biology, 73(1-2), 67-87. doi:10.1007/s11103-009-9583-x es_ES
dc.description.references Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0 es_ES
dc.description.references Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x es_ES
dc.description.references Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x es_ES
dc.description.references Yang, H., Liu, H., Li, G., Feng, J., Qin, H., Liu, X., … Wang, D. (2009). Reduction of root flavonoid level and its potential involvement in lateral root emergence in Arabidopsis thaliana grown under low phosphate supply. Functional Plant Biology, 36(6), 564. doi:10.1071/fp08283 es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES
dc.description.references Qin, C., Qian, W., Wang, W., Wu, Y., Yu, C., Jiang, X., … Wu, P. (2008). GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 105(47), 18308-18313. doi:10.1073/pnas.0806168105 es_ES
dc.description.references Yan, F., Feuerle, R., Schäffer, S., Fortmeier, H., & Schubert, S. (1998). Adaptation of Active Proton Pumping and Plasmalemma ATPase Activity of Corn Roots to Low Root Medium pH. Plant Physiology, 117(1), 311-319. doi:10.1104/pp.117.1.311 es_ES
dc.description.references Sveinsdóttir, H., Yan, F., Zhu, Y., Peiter-Volk, T., & Schubert, S. (2009). Seed ageing-induced inhibition of germination and post-germination root growth is related to lower activity of plasma membrane H+-ATPase in maize roots. Journal of Plant Physiology, 166(2), 128-135. doi:10.1016/j.jplph.2008.01.012 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem