Mostrar el registro sencillo del ítem
dc.contributor.author | Alcaraz, Raúl | es_ES |
dc.contributor.author | Rieta Ibañez, José Joaquín | es_ES |
dc.date.accessioned | 2014-12-11T12:47:56Z | |
dc.date.available | 2014-12-11T12:47:56Z | |
dc.date.issued | 2012-08-09 | |
dc.identifier.issn | 1475-925X | |
dc.identifier.uri | http://hdl.handle.net/10251/45358 | |
dc.description.abstract | Background Atrial fibrillation (AF) is the most common supraventricular arrhythmia in the clinical practice, being the subject of intensive research. Methods The present work introduces two different Wavelet Transform (WT) applications to electrocardiogram (ECG) recordings of patients in AF. The first one predicts spontaneous termination of paroxysmal AF (PAF), whereas the second one deals with the prediction of electrical cardioversion (ECV) outcome in persistent AF patients. In both cases, the central tendency measure (CTM) from the first differences scatter plot was applied to the AF wavelet decomposition. In this way, the wavelet coefficients vector CTM associated to the AF frequency scale was used to assess how atrial fibrillatory (f) waves variability can be related to AF events. Results Structural changes into the f waves can be assessed by combining WT and CTM to reflect atrial activity organization variation. This fact can be used to predict organization-related events in AF. To this respect, results in the prediction of PAF termination regarding sensitivity, specificity and accuracy were 100%, 91.67% and 96%, respectively. On the other hand, for ECV outcome prediction, 82.93% sensitivity, 90.91% specificity and 85.71% accuracy were obtained. Hence, CTM has reached the highest diagnostic ability as a single predictor published to date. Conclusions Results suggest that CTM can be considered as a promising tool to characterize non-invasive AF signals. In this sense, therapeutic interventions for the treatment of paroxysmal and persistent AF patients could be improved, thus, avoiding useless procedures and minimizing risks. | es_ES |
dc.description.sponsorship | This work was supported by the projects TEC2010-20633 from the Spanish Ministry of Science and Innovation and PPII11-0194-8121 and PII1C09-0036-3237 from Junta de Comunidades de Castilla-La Mancha. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | BioMed Central | es_ES |
dc.relation.ispartof | BioMedical Engineering OnLine | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Atrial Fibrillation | es_ES |
dc.subject | Central Tendency Measure | es_ES |
dc.subject | Electrical Cardioversion | es_ES |
dc.subject | Electrocardiogram | es_ES |
dc.subject | Wavelet Transform | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/1475-925X-11-46 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-20633/ES/DESARROLLO Y APLICACION DE ESTIMADORES AVANZADOS DE ORGANIZACION PARA LA CLASIFICACION TERAPEUTICA Y EL SEGUIMIENTO DE PACIENTES CON FIBRILACION AURICULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PII1C09-0036-3237/ES/Predicción De Riesgo De Muerte Súbita Tras Infarto De Miocardio Mediante Técnicas Avanzadas De Procesado Digital De Señal/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PPII11-0194-8121]/ES/PPII11-0194-8121]/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Grupo de ingeniería en bioseñales e imagen radiológica | es_ES |
dc.description.bibliographicCitation | Alcaraz, R.; Rieta Ibañez, JJ. (2012). Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings. BioMedical Engineering OnLine. 11(46):1-19. https://doi.org/10.1186/1475-925X-11-46 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1186/1475-925X-11-46 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 46 | es_ES |
dc.relation.senia | 239059 | |
dc.identifier.pmid | 22877316 | en_EN |
dc.identifier.pmcid | PMC3444389 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological Measurement, 26(5), R155-R199. doi:10.1088/0967-3334/26/5/r01 | es_ES |
dc.description.references | Miyasaka, Y., Barnes, M. E., Gersh, B. J., Cha, S. S., Bailey, K. R., Abhayaratna, W. P., … Tsang, T. S. M. (2006). Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence. Circulation, 114(2), 119-125. doi:10.1161/circulationaha.105.595140 | es_ES |
dc.description.references | Allessie, M. A., Konings, K., Kirchhof, C. J. H. J., & Wijffels, M. (1996). Electrophysiologic mechanisms of perpetuation of atrial fibrillation. The American Journal of Cardiology, 77(3), 10A-23A. doi:10.1016/s0002-9149(97)89114-x | es_ES |
dc.description.references | Bollmann, A., Husser, D., Mainardi, L., Lombardi, F., Langley, P., Murray, A., … Sörnmo, L. (2006). Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. EP Europace, 8(11), 911-926. doi:10.1093/europace/eul113 | es_ES |
dc.description.references | GALL, N. P., & MURGATROYD, F. D. (2007). Electrical Cardioversion for AF?The State of the Art. Pacing and Clinical Electrophysiology, 30(4), 554-567. doi:10.1111/j.1540-8159.2007.00709.x | es_ES |
dc.description.references | Alcaraz, R., Hornero, F., & Rieta, J. J. (2010). Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms. Physiological Measurement, 32(1), 99-114. doi:10.1088/0967-3334/32/1/007 | es_ES |
dc.description.references | Sih, H. J., Zipes, D. P., Berbari, E. J., & Olgin, J. E. (1999). A high-temporal resolution algorithm for quantifying organization during atrial fibrillation. IEEE Transactions on Biomedical Engineering, 46(4), 440-450. doi:10.1109/10.752941 | es_ES |
dc.description.references | Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215 | es_ES |
dc.description.references | Alcaraz, R., & Rieta, J. J. (2008). Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiological Measurement, 29(12), 1351-1369. doi:10.1088/0967-3334/29/12/001 | es_ES |
dc.description.references | Stridh, M., Sornmo, L., Meurling, C. J., & Olsson, S. B. (2004). Sequential Characterization of Atrial Tachyarrhythmias Based on ECG Time-Frequency Analysis. IEEE Transactions on Biomedical Engineering, 51(1), 100-114. doi:10.1109/tbme.2003.820331 | es_ES |
dc.description.references | Bollmann, A. (1999). Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG. Cardiovascular Research, 44(1), 60-66. doi:10.1016/s0008-6363(99)00156-x | es_ES |
dc.description.references | Capucci, A., Biffi, M., Boriani, G., Ravelli, F., Nollo, G., Sabbatani, P., … Magnani, B. (1995). Dynamic Electrophysiological Behavior of Human Atria During Paroxysmal Atrial Fibrillation. Circulation, 92(5), 1193-1202. doi:10.1161/01.cir.92.5.1193 | es_ES |
dc.description.references | Hornero, R., Abasolo, D., Jimeno, N., Sanchez, C. I., Poza, J., & Aboy, M. (2006). Variability, Regularity, and Complexity of Time Series Generated by Schizophrenic Patients and Control Subjects. IEEE Transactions on Biomedical Engineering, 53(2), 210-218. doi:10.1109/tbme.2005.862547 | es_ES |
dc.description.references | Alcaraz, R., & Rieta, J. J. (2008). Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation. Physiological Measurement, 29(1), 65-80. doi:10.1088/0967-3334/29/1/005 | es_ES |
dc.description.references | Alcaraz, R., & Rieta, J. J. (2008). A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation. Medical & Biological Engineering & Computing, 46(7), 625-635. doi:10.1007/s11517-008-0348-5 | es_ES |
dc.description.references | Brennan, M., Palaniswami, M., & Kamen, P. (2001). Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Transactions on Biomedical Engineering, 48(11), 1342-1347. doi:10.1109/10.959330 | es_ES |
dc.description.references | Alcaraz, R., & Rieta, J. J. (2009). Sample entropy of the main atrial wave predicts spontaneous termination of paroxysmal atrial fibrillation. Medical Engineering & Physics, 31(8), 917-922. doi:10.1016/j.medengphy.2009.05.002 | es_ES |
dc.description.references | ALCARAZ, R., HORNERO, F., & RIETA, J. J. (2011). Noninvasive Time and Frequency Predictors of Long-Standing Atrial Fibrillation Early Recurrence after Electrical Cardioversion. Pacing and Clinical Electrophysiology, 34(10), 1241-1250. doi:10.1111/j.1540-8159.2011.03125.x | es_ES |
dc.description.references | Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005 | es_ES |
dc.description.references | Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007 | es_ES |
dc.description.references | Alcaraz, R., & Rieta, J. J. (2009). Time and frequency recurrence analysis of persistent atrial fibrillation after electrical cardioversion. Physiological Measurement, 30(5), 479-489. doi:10.1088/0967-3334/30/5/005 | es_ES |
dc.description.references | Sun, R., & Wang, Y. (2008). Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot. Medical Engineering & Physics, 30(9), 1105-1111. doi:10.1016/j.medengphy.2008.01.008 | es_ES |
dc.description.references | Alcaraz, R., Rieta, J. J., & Hornero, F. (2008). Caracterización no invasiva de la actividad auricular durante los instantes previos a la terminación de la fibrilación auricular paroxística. Revista Española de Cardiología, 61(2), 154-160. doi:10.1157/13116203 | es_ES |
dc.description.references | Nilsson, F., Stridh, M., Bollmann, A., & Sörnmo, L. (2006). Predicting spontaneous termination of atrial fibrillation using the surface ECG. Medical Engineering & Physics, 28(8), 802-808. doi:10.1016/j.medengphy.2005.11.010 | es_ES |
dc.description.references | Watson, J. N., Addison, P. S., Uchaipichat, N., Shah, A. S., & Grubb, N. R. (2007). Wavelet transform analysis predicts outcome of DC cardioversion for atrial fibrillation patients. Computers in Biology and Medicine, 37(4), 517-523. doi:10.1016/j.compbiomed.2006.08.003 | es_ES |
dc.description.references | Holmqvist, F., Stridh, M., Waktare, J. E. P., Roijer, A., Sörnmo, L., Platonov, P. G., & Meurling, C. J. (2006). Atrial fibrillation signal organization predicts sinus rhythm maintenance in patients undergoing cardioversion of atrial fibrillation. EP Europace, 8(8), 559-565. doi:10.1093/europace/eul072 | es_ES |
dc.description.references | ZOHAR, P., KOVACIC, M., BREZOCNIK, M., & PODBREGAR, M. (2005). Prediction of maintenance of sinus rhythm after electrical cardioversion of atrial fibrillation by non-deterministic modelling. Europace, 7(5), 500-507. doi:10.1016/j.eupc.2005.04.007 | es_ES |
dc.description.references | VAN DEN BERG, M. P., VAN NOORD, T., BROUWER, J., HAAKSMA, J., VAN VELDHUISEN, D. J., CRIJNS, H. J. G. M., & VAN GELDER, I. C. (2004). Clustering of RR Intervals Predicts Effective Electrical Cardioversion for Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 15(9), 1027-1033. doi:10.1046/j.1540-8167.2004.03686.x | es_ES |
dc.description.references | Alcaraz, R., Rieta, J. J., & Hornero, F. (2009). Non-invasive atrial fibrillation organization follow-up under successive attempts of electrical cardioversion. Medical & Biological Engineering & Computing, 47(12), 1247-1255. doi:10.1007/s11517-009-0519-z | es_ES |
dc.description.references | Zheng, H., & Wu, J. (2008). A Real-Time QRS Detector Based on Discrete Wavelet Transform and Cubic Spline Interpolation. Telemedicine and e-Health, 14(8), 809-815. doi:10.1089/tmj.2008.0073 | es_ES |
dc.description.references | Pan, Y.-H., Wang, Y.-H., Liang, S.-F., & Lee, K.-T. (2011). Fast computation of sample entropy and approximate entropy in biomedicine. Computer Methods and Programs in Biomedicine, 104(3), 382-396. doi:10.1016/j.cmpb.2010.12.003 | es_ES |
dc.description.references | Manis, G. (2008). Fast computation of approximate entropy. Computer Methods and Programs in Biomedicine, 91(1), 48-54. doi:10.1016/j.cmpb.2008.02.008 | es_ES |
dc.description.references | Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586 | es_ES |
dc.description.references | HUSSER, D., STRIDH, M., CANNOM, D. S., BHANDARI, A. K., GIRSKY, M. J., KANG, S., … BOLLMANN, A. (2007). Validation and Clinical Application of Time-Frequency Analysis of Atrial Fibrillation Electrocardiograms. Journal of Cardiovascular Electrophysiology, 18(1), 41-46. doi:10.1111/j.1540-8167.2006.00683.x | es_ES |