- -

Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alcaraz, Raúl es_ES
dc.contributor.author Rieta Ibañez, José Joaquín es_ES
dc.date.accessioned 2014-12-11T12:47:56Z
dc.date.available 2014-12-11T12:47:56Z
dc.date.issued 2012-08-09
dc.identifier.issn 1475-925X
dc.identifier.uri http://hdl.handle.net/10251/45358
dc.description.abstract Background Atrial fibrillation (AF) is the most common supraventricular arrhythmia in the clinical practice, being the subject of intensive research. Methods The present work introduces two different Wavelet Transform (WT) applications to electrocardiogram (ECG) recordings of patients in AF. The first one predicts spontaneous termination of paroxysmal AF (PAF), whereas the second one deals with the prediction of electrical cardioversion (ECV) outcome in persistent AF patients. In both cases, the central tendency measure (CTM) from the first differences scatter plot was applied to the AF wavelet decomposition. In this way, the wavelet coefficients vector CTM associated to the AF frequency scale was used to assess how atrial fibrillatory (f) waves variability can be related to AF events. Results Structural changes into the f waves can be assessed by combining WT and CTM to reflect atrial activity organization variation. This fact can be used to predict organization-related events in AF. To this respect, results in the prediction of PAF termination regarding sensitivity, specificity and accuracy were 100%, 91.67% and 96%, respectively. On the other hand, for ECV outcome prediction, 82.93% sensitivity, 90.91% specificity and 85.71% accuracy were obtained. Hence, CTM has reached the highest diagnostic ability as a single predictor published to date. Conclusions Results suggest that CTM can be considered as a promising tool to characterize non-invasive AF signals. In this sense, therapeutic interventions for the treatment of paroxysmal and persistent AF patients could be improved, thus, avoiding useless procedures and minimizing risks. es_ES
dc.description.sponsorship This work was supported by the projects TEC2010-20633 from the Spanish Ministry of Science and Innovation and PPII11-0194-8121 and PII1C09-0036-3237 from Junta de Comunidades de Castilla-La Mancha. en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BioMedical Engineering OnLine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Atrial Fibrillation es_ES
dc.subject Central Tendency Measure es_ES
dc.subject Electrical Cardioversion es_ES
dc.subject Electrocardiogram es_ES
dc.subject Wavelet Transform es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1475-925X-11-46
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-20633/ES/DESARROLLO Y APLICACION DE ESTIMADORES AVANZADOS DE ORGANIZACION PARA LA CLASIFICACION TERAPEUTICA Y EL SEGUIMIENTO DE PACIENTES CON FIBRILACION AURICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PII1C09-0036-3237/ES/Predicción De Riesgo De Muerte Súbita Tras Infarto De Miocardio Mediante Técnicas Avanzadas De Procesado Digital De Señal/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PPII11-0194-8121]/ES/PPII11-0194-8121]/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de ingeniería en bioseñales e imagen radiológica es_ES
dc.description.bibliographicCitation Alcaraz, R.; Rieta Ibañez, JJ. (2012). Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings. BioMedical Engineering OnLine. 11(46):1-19. https://doi.org/10.1186/1475-925X-11-46 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/1475-925X-11-46 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 46 es_ES
dc.relation.senia 239059
dc.identifier.pmid 22877316 en_EN
dc.identifier.pmcid PMC3444389 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological Measurement, 26(5), R155-R199. doi:10.1088/0967-3334/26/5/r01 es_ES
dc.description.references Miyasaka, Y., Barnes, M. E., Gersh, B. J., Cha, S. S., Bailey, K. R., Abhayaratna, W. P., … Tsang, T. S. M. (2006). Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence. Circulation, 114(2), 119-125. doi:10.1161/circulationaha.105.595140 es_ES
dc.description.references Allessie, M. A., Konings, K., Kirchhof, C. J. H. J., & Wijffels, M. (1996). Electrophysiologic mechanisms of perpetuation of atrial fibrillation. The American Journal of Cardiology, 77(3), 10A-23A. doi:10.1016/s0002-9149(97)89114-x es_ES
dc.description.references Bollmann, A., Husser, D., Mainardi, L., Lombardi, F., Langley, P., Murray, A., … Sörnmo, L. (2006). Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. EP Europace, 8(11), 911-926. doi:10.1093/europace/eul113 es_ES
dc.description.references GALL, N. P., & MURGATROYD, F. D. (2007). Electrical Cardioversion for AF?The State of the Art. Pacing and Clinical Electrophysiology, 30(4), 554-567. doi:10.1111/j.1540-8159.2007.00709.x es_ES
dc.description.references Alcaraz, R., Hornero, F., & Rieta, J. J. (2010). Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms. Physiological Measurement, 32(1), 99-114. doi:10.1088/0967-3334/32/1/007 es_ES
dc.description.references Sih, H. J., Zipes, D. P., Berbari, E. J., & Olgin, J. E. (1999). A high-temporal resolution algorithm for quantifying organization during atrial fibrillation. IEEE Transactions on Biomedical Engineering, 46(4), 440-450. doi:10.1109/10.752941 es_ES
dc.description.references Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2008). Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiological Measurement, 29(12), 1351-1369. doi:10.1088/0967-3334/29/12/001 es_ES
dc.description.references Stridh, M., Sornmo, L., Meurling, C. J., & Olsson, S. B. (2004). Sequential Characterization of Atrial Tachyarrhythmias Based on ECG Time-Frequency Analysis. IEEE Transactions on Biomedical Engineering, 51(1), 100-114. doi:10.1109/tbme.2003.820331 es_ES
dc.description.references Bollmann, A. (1999). Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG. Cardiovascular Research, 44(1), 60-66. doi:10.1016/s0008-6363(99)00156-x es_ES
dc.description.references Capucci, A., Biffi, M., Boriani, G., Ravelli, F., Nollo, G., Sabbatani, P., … Magnani, B. (1995). Dynamic Electrophysiological Behavior of Human Atria During Paroxysmal Atrial Fibrillation. Circulation, 92(5), 1193-1202. doi:10.1161/01.cir.92.5.1193 es_ES
dc.description.references Hornero, R., Abasolo, D., Jimeno, N., Sanchez, C. I., Poza, J., & Aboy, M. (2006). Variability, Regularity, and Complexity of Time Series Generated by Schizophrenic Patients and Control Subjects. IEEE Transactions on Biomedical Engineering, 53(2), 210-218. doi:10.1109/tbme.2005.862547 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2008). Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation. Physiological Measurement, 29(1), 65-80. doi:10.1088/0967-3334/29/1/005 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2008). A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation. Medical & Biological Engineering & Computing, 46(7), 625-635. doi:10.1007/s11517-008-0348-5 es_ES
dc.description.references Brennan, M., Palaniswami, M., & Kamen, P. (2001). Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Transactions on Biomedical Engineering, 48(11), 1342-1347. doi:10.1109/10.959330 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2009). Sample entropy of the main atrial wave predicts spontaneous termination of paroxysmal atrial fibrillation. Medical Engineering & Physics, 31(8), 917-922. doi:10.1016/j.medengphy.2009.05.002 es_ES
dc.description.references ALCARAZ, R., HORNERO, F., & RIETA, J. J. (2011). Noninvasive Time and Frequency Predictors of Long-Standing Atrial Fibrillation Early Recurrence after Electrical Cardioversion. Pacing and Clinical Electrophysiology, 34(10), 1241-1250. doi:10.1111/j.1540-8159.2011.03125.x es_ES
dc.description.references Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005 es_ES
dc.description.references Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2009). Time and frequency recurrence analysis of persistent atrial fibrillation after electrical cardioversion. Physiological Measurement, 30(5), 479-489. doi:10.1088/0967-3334/30/5/005 es_ES
dc.description.references Sun, R., & Wang, Y. (2008). Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot. Medical Engineering & Physics, 30(9), 1105-1111. doi:10.1016/j.medengphy.2008.01.008 es_ES
dc.description.references Alcaraz, R., Rieta, J. J., & Hornero, F. (2008). Caracterización no invasiva de la actividad auricular durante los instantes previos a la terminación de la fibrilación auricular paroxística. Revista Española de Cardiología, 61(2), 154-160. doi:10.1157/13116203 es_ES
dc.description.references Nilsson, F., Stridh, M., Bollmann, A., & Sörnmo, L. (2006). Predicting spontaneous termination of atrial fibrillation using the surface ECG. Medical Engineering & Physics, 28(8), 802-808. doi:10.1016/j.medengphy.2005.11.010 es_ES
dc.description.references Watson, J. N., Addison, P. S., Uchaipichat, N., Shah, A. S., & Grubb, N. R. (2007). Wavelet transform analysis predicts outcome of DC cardioversion for atrial fibrillation patients. Computers in Biology and Medicine, 37(4), 517-523. doi:10.1016/j.compbiomed.2006.08.003 es_ES
dc.description.references Holmqvist, F., Stridh, M., Waktare, J. E. P., Roijer, A., Sörnmo, L., Platonov, P. G., & Meurling, C. J. (2006). Atrial fibrillation signal organization predicts sinus rhythm maintenance in patients undergoing cardioversion of atrial fibrillation. EP Europace, 8(8), 559-565. doi:10.1093/europace/eul072 es_ES
dc.description.references ZOHAR, P., KOVACIC, M., BREZOCNIK, M., & PODBREGAR, M. (2005). Prediction of maintenance of sinus rhythm after electrical cardioversion of atrial fibrillation by non-deterministic modelling. Europace, 7(5), 500-507. doi:10.1016/j.eupc.2005.04.007 es_ES
dc.description.references VAN DEN BERG, M. P., VAN NOORD, T., BROUWER, J., HAAKSMA, J., VAN VELDHUISEN, D. J., CRIJNS, H. J. G. M., & VAN GELDER, I. C. (2004). Clustering of RR Intervals Predicts Effective Electrical Cardioversion for Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 15(9), 1027-1033. doi:10.1046/j.1540-8167.2004.03686.x es_ES
dc.description.references Alcaraz, R., Rieta, J. J., & Hornero, F. (2009). Non-invasive atrial fibrillation organization follow-up under successive attempts of electrical cardioversion. Medical & Biological Engineering & Computing, 47(12), 1247-1255. doi:10.1007/s11517-009-0519-z es_ES
dc.description.references Zheng, H., & Wu, J. (2008). A Real-Time QRS Detector Based on Discrete Wavelet Transform and Cubic Spline Interpolation. Telemedicine and e-Health, 14(8), 809-815. doi:10.1089/tmj.2008.0073 es_ES
dc.description.references Pan, Y.-H., Wang, Y.-H., Liang, S.-F., & Lee, K.-T. (2011). Fast computation of sample entropy and approximate entropy in biomedicine. Computer Methods and Programs in Biomedicine, 104(3), 382-396. doi:10.1016/j.cmpb.2010.12.003 es_ES
dc.description.references Manis, G. (2008). Fast computation of approximate entropy. Computer Methods and Programs in Biomedicine, 91(1), 48-54. doi:10.1016/j.cmpb.2008.02.008 es_ES
dc.description.references Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586 es_ES
dc.description.references HUSSER, D., STRIDH, M., CANNOM, D. S., BHANDARI, A. K., GIRSKY, M. J., KANG, S., … BOLLMANN, A. (2007). Validation and Clinical Application of Time-Frequency Analysis of Atrial Fibrillation Electrocardiograms. Journal of Cardiovascular Electrophysiology, 18(1), 41-46. doi:10.1111/j.1540-8167.2006.00683.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem