- -

Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings

Mostrar el registro completo del ítem

Alcaraz, R.; Rieta Ibañez, JJ. (2012). Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings. BioMedical Engineering OnLine. 11(46):1-19. https://doi.org/10.1186/1475-925X-11-46

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45358

Ficheros en el ítem

Metadatos del ítem

Título: Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings
Autor: Alcaraz, Raúl Rieta Ibañez, José Joaquín
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Grupo de ingeniería en bioseñales e imagen radiológica
Fecha difusión:
Resumen:
Background Atrial fibrillation (AF) is the most common supraventricular arrhythmia in the clinical practice, being the subject of intensive research. Methods The present work introduces two different Wavelet Transform ...[+]
Palabras clave: Atrial Fibrillation , Central Tendency Measure , Electrical Cardioversion , Electrocardiogram , Wavelet Transform
Derechos de uso: Reconocimiento (by)
Fuente:
BioMedical Engineering OnLine. (issn: 1475-925X )
DOI: 10.1186/1475-925X-11-46
Editorial:
BioMed Central
Versión del editor: http://dx.doi.org/10.1186/1475-925X-11-46
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2010-20633/ES/DESARROLLO Y APLICACION DE ESTIMADORES AVANZADOS DE ORGANIZACION PARA LA CLASIFICACION TERAPEUTICA Y EL SEGUIMIENTO DE PACIENTES CON FIBRILACION AURICULAR/
info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PII1C09-0036-3237/ES/Predicción De Riesgo De Muerte Súbita Tras Infarto De Miocardio Mediante Técnicas Avanzadas De Procesado Digital De Señal/
info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PPII11-0194-8121]/ES/PPII11-0194-8121]/
Agradecimientos:
This work was supported by the projects TEC2010-20633 from the Spanish Ministry of Science and Innovation and PPII11-0194-8121 and PII1C09-0036-3237 from Junta de Comunidades de Castilla-La Mancha.
Tipo: Artículo

References

Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological Measurement, 26(5), R155-R199. doi:10.1088/0967-3334/26/5/r01

Miyasaka, Y., Barnes, M. E., Gersh, B. J., Cha, S. S., Bailey, K. R., Abhayaratna, W. P., … Tsang, T. S. M. (2006). Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence. Circulation, 114(2), 119-125. doi:10.1161/circulationaha.105.595140

Allessie, M. A., Konings, K., Kirchhof, C. J. H. J., & Wijffels, M. (1996). Electrophysiologic mechanisms of perpetuation of atrial fibrillation. The American Journal of Cardiology, 77(3), 10A-23A. doi:10.1016/s0002-9149(97)89114-x [+]
Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological Measurement, 26(5), R155-R199. doi:10.1088/0967-3334/26/5/r01

Miyasaka, Y., Barnes, M. E., Gersh, B. J., Cha, S. S., Bailey, K. R., Abhayaratna, W. P., … Tsang, T. S. M. (2006). Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence. Circulation, 114(2), 119-125. doi:10.1161/circulationaha.105.595140

Allessie, M. A., Konings, K., Kirchhof, C. J. H. J., & Wijffels, M. (1996). Electrophysiologic mechanisms of perpetuation of atrial fibrillation. The American Journal of Cardiology, 77(3), 10A-23A. doi:10.1016/s0002-9149(97)89114-x

Bollmann, A., Husser, D., Mainardi, L., Lombardi, F., Langley, P., Murray, A., … Sörnmo, L. (2006). Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. EP Europace, 8(11), 911-926. doi:10.1093/europace/eul113

GALL, N. P., & MURGATROYD, F. D. (2007). Electrical Cardioversion for AF?The State of the Art. Pacing and Clinical Electrophysiology, 30(4), 554-567. doi:10.1111/j.1540-8159.2007.00709.x

Alcaraz, R., Hornero, F., & Rieta, J. J. (2010). Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms. Physiological Measurement, 32(1), 99-114. doi:10.1088/0967-3334/32/1/007

Sih, H. J., Zipes, D. P., Berbari, E. J., & Olgin, J. E. (1999). A high-temporal resolution algorithm for quantifying organization during atrial fibrillation. IEEE Transactions on Biomedical Engineering, 46(4), 440-450. doi:10.1109/10.752941

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215

Alcaraz, R., & Rieta, J. J. (2008). Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiological Measurement, 29(12), 1351-1369. doi:10.1088/0967-3334/29/12/001

Stridh, M., Sornmo, L., Meurling, C. J., & Olsson, S. B. (2004). Sequential Characterization of Atrial Tachyarrhythmias Based on ECG Time-Frequency Analysis. IEEE Transactions on Biomedical Engineering, 51(1), 100-114. doi:10.1109/tbme.2003.820331

Bollmann, A. (1999). Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG. Cardiovascular Research, 44(1), 60-66. doi:10.1016/s0008-6363(99)00156-x

Capucci, A., Biffi, M., Boriani, G., Ravelli, F., Nollo, G., Sabbatani, P., … Magnani, B. (1995). Dynamic Electrophysiological Behavior of Human Atria During Paroxysmal Atrial Fibrillation. Circulation, 92(5), 1193-1202. doi:10.1161/01.cir.92.5.1193

Hornero, R., Abasolo, D., Jimeno, N., Sanchez, C. I., Poza, J., & Aboy, M. (2006). Variability, Regularity, and Complexity of Time Series Generated by Schizophrenic Patients and Control Subjects. IEEE Transactions on Biomedical Engineering, 53(2), 210-218. doi:10.1109/tbme.2005.862547

Alcaraz, R., & Rieta, J. J. (2008). Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation. Physiological Measurement, 29(1), 65-80. doi:10.1088/0967-3334/29/1/005

Alcaraz, R., & Rieta, J. J. (2008). A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation. Medical & Biological Engineering & Computing, 46(7), 625-635. doi:10.1007/s11517-008-0348-5

Brennan, M., Palaniswami, M., & Kamen, P. (2001). Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Transactions on Biomedical Engineering, 48(11), 1342-1347. doi:10.1109/10.959330

Alcaraz, R., & Rieta, J. J. (2009). Sample entropy of the main atrial wave predicts spontaneous termination of paroxysmal atrial fibrillation. Medical Engineering & Physics, 31(8), 917-922. doi:10.1016/j.medengphy.2009.05.002

ALCARAZ, R., HORNERO, F., & RIETA, J. J. (2011). Noninvasive Time and Frequency Predictors of Long-Standing Atrial Fibrillation Early Recurrence after Electrical Cardioversion. Pacing and Clinical Electrophysiology, 34(10), 1241-1250. doi:10.1111/j.1540-8159.2011.03125.x

Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005

Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007

Alcaraz, R., & Rieta, J. J. (2009). Time and frequency recurrence analysis of persistent atrial fibrillation after electrical cardioversion. Physiological Measurement, 30(5), 479-489. doi:10.1088/0967-3334/30/5/005

Sun, R., & Wang, Y. (2008). Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot. Medical Engineering & Physics, 30(9), 1105-1111. doi:10.1016/j.medengphy.2008.01.008

Alcaraz, R., Rieta, J. J., & Hornero, F. (2008). Caracterización no invasiva de la actividad auricular durante los instantes previos a la terminación de la fibrilación auricular paroxística. Revista Española de Cardiología, 61(2), 154-160. doi:10.1157/13116203

Nilsson, F., Stridh, M., Bollmann, A., & Sörnmo, L. (2006). Predicting spontaneous termination of atrial fibrillation using the surface ECG. Medical Engineering & Physics, 28(8), 802-808. doi:10.1016/j.medengphy.2005.11.010

Watson, J. N., Addison, P. S., Uchaipichat, N., Shah, A. S., & Grubb, N. R. (2007). Wavelet transform analysis predicts outcome of DC cardioversion for atrial fibrillation patients. Computers in Biology and Medicine, 37(4), 517-523. doi:10.1016/j.compbiomed.2006.08.003

Holmqvist, F., Stridh, M., Waktare, J. E. P., Roijer, A., Sörnmo, L., Platonov, P. G., & Meurling, C. J. (2006). Atrial fibrillation signal organization predicts sinus rhythm maintenance in patients undergoing cardioversion of atrial fibrillation. EP Europace, 8(8), 559-565. doi:10.1093/europace/eul072

ZOHAR, P., KOVACIC, M., BREZOCNIK, M., & PODBREGAR, M. (2005). Prediction of maintenance of sinus rhythm after electrical cardioversion of atrial fibrillation by non-deterministic modelling. Europace, 7(5), 500-507. doi:10.1016/j.eupc.2005.04.007

VAN DEN BERG, M. P., VAN NOORD, T., BROUWER, J., HAAKSMA, J., VAN VELDHUISEN, D. J., CRIJNS, H. J. G. M., & VAN GELDER, I. C. (2004). Clustering of RR Intervals Predicts Effective Electrical Cardioversion for Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 15(9), 1027-1033. doi:10.1046/j.1540-8167.2004.03686.x

Alcaraz, R., Rieta, J. J., & Hornero, F. (2009). Non-invasive atrial fibrillation organization follow-up under successive attempts of electrical cardioversion. Medical & Biological Engineering & Computing, 47(12), 1247-1255. doi:10.1007/s11517-009-0519-z

Zheng, H., & Wu, J. (2008). A Real-Time QRS Detector Based on Discrete Wavelet Transform and Cubic Spline Interpolation. Telemedicine and e-Health, 14(8), 809-815. doi:10.1089/tmj.2008.0073

Pan, Y.-H., Wang, Y.-H., Liang, S.-F., & Lee, K.-T. (2011). Fast computation of sample entropy and approximate entropy in biomedicine. Computer Methods and Programs in Biomedicine, 104(3), 382-396. doi:10.1016/j.cmpb.2010.12.003

Manis, G. (2008). Fast computation of approximate entropy. Computer Methods and Programs in Biomedicine, 91(1), 48-54. doi:10.1016/j.cmpb.2008.02.008

Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586

HUSSER, D., STRIDH, M., CANNOM, D. S., BHANDARI, A. K., GIRSKY, M. J., KANG, S., … BOLLMANN, A. (2007). Validation and Clinical Application of Time-Frequency Analysis of Atrial Fibrillation Electrocardiograms. Journal of Cardiovascular Electrophysiology, 18(1), 41-46. doi:10.1111/j.1540-8167.2006.00683.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem