- -

Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment

Show full item record

Bussi, G.; Rodríguez-Lloveras, X.; Francés, F.; Benito, G.; Sanchez-Moya, Y.; Sopeña, A. (2013). Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrology and Earth System Sciences. 17:3339-3354. doi:10.5194/hess-17-3339-2013

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45414

Files in this item

Item Metadata

Title: Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment
Author: Bussi, Gianbattista Rodríguez-Lloveras, X. Francés García, Félix Ramón Benito, G. Sanchez-Moya, Y. Sopeña, A.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Issued date:
Abstract:
Soil loss and sediment transport in Mediterranean areas are driven by complex non-linear processes which have been only partially understood. Distributed models can be very helpful tools for understanding the catchment-scale ...[+]
Subjects: Land-use change , Soil-erosion , Southeast Spain , Paleoflood hydrology , Global optimization , Trap efficiency , Overland-flow , Small Ponds , SE Spain , Rates
Copyrigths: Reconocimiento (by)
Source:
Hydrology and Earth System Sciences. (issn: 1027-5606 )
DOI: 10.5194/hess-17-3339-2013
Publisher:
European Geosciences Union (EGU)
Publisher version: http://dx.doi.org/10.5194/hess-17-3339-2013
Project ID:
info:eu-repo/grantAgreement/MICINN//CGL2008-06474-C02-01/ES/RIESGO DE INUNDACIONES EN RIOS MEDITERRANEOS EN RESPUESTA A LA VARIABILIDAD CLIMATICA Y CAMBIOS AMBIENTALES/ /
info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/
info:eu-repo/grantAgreement/MICINN//CGL2011-29176/ES/IMPACTO DE LA VARIABILIDAD CLIMATICA Y AMBIENTAL EN LA HIDROLOGIA DE LAS PALEO-CRECIDAS Y LOS RIESGOS DE AVENIDAS EN ZONAS MEDITERRANEAS/
info:eu-repo/grantAgreement/MINECO//CGL2011-28776-C02-01/ES/MODELACION ECOHIDROLOGICA DISTRIBUIDA A ESCALA DE CUENCA PARA BOSQUES EN CLIMAS SEMIARIDOS/
Thanks:
This study was funded by the Spanish Ministry of Economy and Competitiveness through the research projects FLOOD-MED (ref. CGL2008-06474-C02-01/02), SCARCE-CONSOLIDER (ref. CSD2009-00065), CLARIES (ref. CGL2011-29176) and ...[+]
Type: Artículo

References

Ackermann, W. C. and Corinth, R. L.: An empirical equation for reservoir sedimentation, in Symposium of Bari (Italy), International Association of Hydrological Sciences Publication 59, 359–366, Bari (Italy), 1962.

Alatorre, L. C., Beguería, S., and García-Ruiz, J. M.: Regional scale modeling of hillslope sediment delivery: A case study in the Barasona Reservoir watershed (Spain) using WATEM/SEDEM, J. Hydrol., 391, 109-123, https://doi.org/10.1016/j.jhydrol.2010.07.010, 2010.

Alatorre, L. C., Beguer\\'ia, S., Lana-Renault, N., Navas, A., and Garc\\'ia-Ruiz, J. M.: Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model, Hydrol. Earth Syst. Sci., 16, 1321–1334, https://doi.org/10.5194/hess-16-1321-2012, 2012. [+]
Ackermann, W. C. and Corinth, R. L.: An empirical equation for reservoir sedimentation, in Symposium of Bari (Italy), International Association of Hydrological Sciences Publication 59, 359–366, Bari (Italy), 1962.

Alatorre, L. C., Beguería, S., and García-Ruiz, J. M.: Regional scale modeling of hillslope sediment delivery: A case study in the Barasona Reservoir watershed (Spain) using WATEM/SEDEM, J. Hydrol., 391, 109-123, https://doi.org/10.1016/j.jhydrol.2010.07.010, 2010.

Alatorre, L. C., Beguer\\'ia, S., Lana-Renault, N., Navas, A., and Garc\\'ia-Ruiz, J. M.: Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model, Hydrol. Earth Syst. Sci., 16, 1321–1334, https://doi.org/10.5194/hess-16-1321-2012, 2012.

Andrés-Doménech, I., Múnera, J. C., Francés, F., and Marco, J. B.: Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment, Hydrol. Earth Syst. Sci., 14, 2057–2072, https://doi.org/10.5194/hess-14-2057-2010, 2010.

Andreu, V., Imeson, A. C., and Rubio, J. L.: Temporal changes in soil aggregates and water erosion after a wildfire in a Mediterranean pine forest, Catena, 44, 69–84, https://doi.org/10.1016/S0341-8162(00)00177-6, 2001.

Antolín, C.: El suelo como recurso natural en la Comunitat Valenciana, Consellería de Territorio y Vivienda, Generalitat Valenciana, Valencia (Spain), 1998.

Avendaño Salas, C., Cobo Rayán, R., Gómez Montaña, J., and Sanz Montero, M.: Procedimiento para evaluar la degradación específica (erosión) de cuencas de embalses a partir de los sedimientos acumulados en los mismos. Aplicación al estudio de embalses españoles, Ingeniería Civil, 99, 51–58, 1995.

Avendaño Salas, N., Sanz Montero, M., Cobo Rayán, R., and Gómez Montaña, J.: Sediment yield at Spanish reservoirs and its relationship with the drainage basin area, Proceedings of the 19th Symposium of Large Dams, Florence, ICOLD (International Committee on Large Dams), Florence, 863–874, 1997.

Baeza, M. J., Valdecantos, A., Alloza, J. A., and Vallejo, V. R.: Human disturbance and environmental factors as drivers of long-term post-fire regeneration patterns in Mediterranean forests, J. Veg. Sci., 18,, 243–252, https://doi.org/10.1111/j.1654-1103.2007.tb02535.x, 2007.

Baker, V.: Paleoflood hydrology: Origin, progress, prospects, Geomorphology, 101, 1–13, https://doi.org/10.1016/j.geomorph.2008.05.016, 2008.

Bangqi Hu, Zuosheng Yang, Houjie Wang, Xiaoxia Sun, Naishuang Bi, and Guogang Li: Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea, Hydrol. Earth Syst. Sci., 13, 2253–2264, https://doi.org/10.5194/hess-13-2253-2009, 2009.

Bellin, N., Vanacker, V., Van Wesemael, B., Solé-Benet, A., and Bakker, M.: Natural and anthropogenic controls on soil erosion in the Internal Betic Cordillera (southeast Spain), Catena, 87, 190–200, https://doi.org/10.1016/j.catena.2011.05.022, 2011.

Benito, G., Rico, M., Sánchez-Moya, Y., Sopeña, A., Thorndycraft, V. R., and Barriendos M.: The impact of late Holocene climatic variability and land use change on the flood hydrology of the Guadalentín River, southeast Spain, Global Planet. Change, 70, 53–63, https://doi.org/10.1016/j.gloplacha.2009.11.007, 2010.

Boix-Fayos, C., Martínez-Mena, M., Calvo-Cases, A., Castillo, V., and Albaladejo, J.: Concise review of interrill erosion studies in SE Spain (Alicante and Murcia): erosion rates and progress of knowledge from the 1980s, Land Degrad. Dev., 16, 517–528, https://doi.org/10.1002/ldr.706, 2005.

Boix-Fayos, C., De Vente, J., Martínez-Mena, M., Barberá, G., and Castillo, V.: The impact of land use change and check-dams on catchment sediment yield, Hydrol. Process., 22, 4922–4935, https://doi.org/10.1002/hyp.7115, 2008.

Brown, C: Discussion of sedimentation in reservoir, In: Witzig J. (Ed.), Proceedings of the American Society of Civil Engineers 69, 1493–1500, 1943.

Brune, G. M.: Trap efficiency of reservoirs, Trans. AGU, 34, 407–418, 1953.

Callander, R. A. and Duder, J. N.: Reservoir sedimentation in the Rangitaiki River, New Zealand Engineering, 34, 208–215, 1979.

Camarasa Belmonte, A. M. and Segura Beltrán, F.: Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain, Catena, 45, 229–249, https://doi.org/10.1016/S0341-8162(01)00146-1, 2001.

Campo, J., Andreu, V., Gimeno-Garcia, E., González, O., and Rubio, J. L.: Occurrence of soil erosion after repeated experimental fires in a Mediterranean environment, Geomorphology, 82, 376–387, https://doi.org/10.1016/j.geomorph.2006.05.014, 2006.

Cerdà, A.: Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone, J. Hydrol., 198, 209–225, https://doi.org/10.1016/S0022-1694(96)03295-7, 1997.

Cerdà, A.: Soil aggregate stability under different Mediterranean vegetation types, Catena, 32, 73–86, https://doi.org/10.1016/S0341-8162(98)00041-1, 1998a.

Cerdà, A.: Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland, Hydrol. Process., 12, 1031–1042, https://doi.org/10.1002/(SICI)1099-1085(19980615)12:7 3.0.CO;2-V, 1998b

Cerdà, A.: Post-fire dynamics of erosional processes under Mediterranean climatic conditions, Z. Geomorphologie, 42, 373–398, 1998c.

Cerdà, A. and Doerr, S. H.: The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period, Catena, 74, 256–263, https://doi.org/10.1016/j.catena.2008.03.010, 2008.

Cerdà, A. and Lasanta, T.: Long-term erosional responses after fire in the Central Spanish Pyrenees, Catena, 60, 59–80, https://doi.org/10.1016/j.catena.2004.09.006, 2005.

Chen, C.: Design of sediment retention basins, in Proceedings, National Symposium on Urban Hydrology and Sediment Control, 285–298, University of Kentucky, Lexington, KY, 1975.

Cheng, Y.: Sediment discharge from a storm-water retention pond, J. Irrig. Drain. Eng., 134, 606–612, https://doi.org/10.1061/(ASCE)0733-9437(2008)134:5(606), 2008.

Coulthard, T. J., Kirkby, M. J., and Macklin, M.G.: Non-linearity and spatial resolution in a cellular automaton model of a small upland basin, Hydrol. Earth. Syst. Sci., 2, 257-264, 1998.

De Vente, J., Poesen, J., and Verstraeten, G.: The application of semi-quantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain, J. Hydrol., 305, 63–86, https://doi.org/10.1016/j.jhydrol.2004.08.030, 2005.

De Vente, J., Poesen, J., Verstraeten, G., Van Rompaey, A., and Govers, G.: Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain, Global Planet. Change, 60, 393–415, https://doi.org/10.1016/j.gloplacha.2007.05.002, 2008.

Dissmeyer, G. E. and Foster, G. R.: A guide for predicting sheet and rill erosion on forest land, USDA, Forest Service, Southern Region, Atlanta, Ga. (USA), 1984.

Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015–1031, https://doi.org/10.1029/91WR02985, 1992.

Duan, Q., Sorooshian, S., and Gupta, V.: Optimal use of the SCE-UA global optimization method for calibrating watershed models, J. Hydrol., 158, 265–284, https://doi.org/10.1016/0022-1694(94)90057-4, 1994.

Duck, R. and McManus, J.: Sedimentation in natural and artificial Impoundments: an indicator of evolving climate, land use and dynamic conditions, in: Geomorphology and Sedimentology of Lakes and Reservoirs, edited by: McManus J. and Duck R., Wiley, 1993.

Engelund, F. and Hansen, E.: A monograph on sediment transport in alluvial streams, Monogr, Denmark Tech Univ., Hydraul Lab, 1967.

Farnham, C. W., Beer, C. E., and Heinemann, H.: Evaluation of factors affecting reservoir sediment deposition, in Symposium of Garda (Italy): Hydrology of Lakes and Reservoirs, International Association of Hydrological Sciences Publication, 747–758, Garda (Italy), 1966.

Foster, I.: Lakes and Reservoirs in the Sediment Delivery System: Reconstructing Sediment Yields, in: Soil erosion and sediment redistribution in river catchments. Measurement, Modelling and Management, edited by: Owens P. and Collins A., Biddles Ltd, King's Lynn, p. 328, https://doi.org/10.1079/9780851990507.0128, 2006.

Foster, I. and Walling, D.: Using reservoir deposits to reconstruct changing sediment yields and sources in the catchment of the Old Mill Reservoir, South Devon, UK, over the past 50 years, Hydrolog. Sci. J., 39, 347–368, https://doi.org/10.1080/02626669409492755, 1994.

Francés, F., Vélez, J. J., Vélez, J. I., and Puricelli, M.: Distributed modelling of large basins for a real time flood forecasting system in Spain, Proceedings Second Federal Interagency Hydrologic Modelling Conference, Gan, TY and Biftu, Las Vegas, 3513–3524, 2002.

Francés, F., Vélez, J. I., and Vélez J. J.: Split-parameter structure for the automatic calibration of distributed hydrological models, J. Hydrol., 332, 226–240, https://doi.org/10.1016/j.jhydrol.2006.06.032, 2007.

Francés, F., García-Bartual, R., and Bussi, G.: High return period annual maximum reservoir water level quantiles estimation using synthetic generated flood events, in Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management, 185–190, Taylor & Francis Group, London, 2011.

Gallart, F., Balasch, C., Regüés, D., Soler, M., and Castelltort, X.: Catchment dynamics in a Mediterranean mountain environment: the Vallcebre research basins (South Eastern Pyrenees), II Erosion and sediment dynamics, Catchment dynamics and river processes: latest research with examples from the Mediterranean climate regions, Elsevier, 17–29, 2005.

Geiger, A. F.: Sediment yields from small watersheds in the United States, 11th General Assembly of the International Union of Geodesy and Geophysics, Vol. 1, 269–276, Toronto (Canada), 1957.

González-Hidalgo, J. C., Peña-Monné, J. L., and De Luis, M.: A review of daily soil erosion in Western Mediterranean areas, Catena, 71, 193–199, https://doi.org/10.1016/j.catena.2007.03.005, 2007.

Grauso, S., Fattoruso, G., Crocetti, G., and Montanari, A.: Estimating the suspended sediment yield in a river network by means of geomorphic parameters and regression relationships, Hydrol. Earth. Syst. Sci., 12, 177–191, https://doi.org/10.5194/hess-13-1937-2009, 2008.

Johnson, B. E., Julien, P. Y., Molnar, D. K., and Watson, C. C.: The two-dimensional upland erosion model CASC2D-SED, J. Am. Water Resour. As., 36, 31–42, https://doi.org/10.1111/j.1752-1688.2000.tb04246.x, 2000.

Julien, P. Y.: Erosion and sedimentation, second edition, Cambridge University Press, 2010.

Julien, P. and Simons, D. B.: Sediment transport capacity of overland flow, Transactions of the ASAE, 1985.

Jolly, J.: A proposed method for accurately calculating sediment yields from reservoir deposition volumes, Proceedings of the Exeter Symposium, IAHS Publ. No 37, 1982.

Kilinc, M. and Richardson, E. V.: Mechanics of soil erosion from overland flow generated by simulated rainfall, Colorado State University, Hydrology Papers, 1973.

Kirkby, M., Irvine, B., Jones, R., and Govers G.: The PESERA coarse scale erosion model for Europe. I. Model rationale and implementation, Eur. J. Soil Sci., 59, 1293–1306, https://doi.org/10.1111/j.1365-2389.2008.01072.x, 2008.

Kochel, R. and Baker, V.: Paleoflood Hydrology, Science, 215, 353–361, https://doi.org/10.1126/science.215.4531.353, 1982.

Kosmas, C., Danalatos, N. G., Cammeraat, L. H., Chabart, M., Diamantopoulos, J., Farand, R., Gutierrez, L., Jacob, A., Marques, H., Martinez-Fernandez, J., Mizara, A., Moustakas, N., Nicolau, J. M., Oliveros, C., Pinna, G., Puddu, R., Puigdefabregas, J., Roxo, M., Simao, A., Stamou, G., Tomasi, N., Usai, D., and Vacca, A.: The effect of land use on runoff and soil erosion rates under Mediterranean conditions, Catena, 29, 45–59, 1997.

Lane, E. and Koelzer, V.: Density of sediments deposited in reservoirs, Rep. No. 9 of a Study of Methods Used in Measurement and Analysis of Sediment Loads in Streams, 1943.

Le Roux, J. and Roos, Z.: The rate of soil erosion in the Wuras Dam catchment calculated from sediments trapped in the dam, Z. Geomorphol, Suppl. 26, 315–329, 1982.

Machado, M. J., Benito, G., Barriendos, M., and Rodrigo, F. S.: 500 years of rainfall variability and extreme hydrological events in southeastern Spain drylands, J. Arid Environ., 75, 1244–1253, https://doi.org/10.1016/j.jaridenv.2011.02.002, 2011.

McManus, J. and Duck, R: Sediment yield estimated from reservoir siltation in the Ochil Hills, Scotland, Earth Surf. Proc. Land, 10, 193–200, https://doi.org/10.1002/esp.3290100211, 1985.

Montoya, J. J.: Desarrollo de un modelo conceptual de producción, transporte y depósito de sedimentos, Phd Thesis. Universitat Politècnica de València (Spain), 2008.

Morales de la Cruz M. and Francés, F.: Hydrological modelling of the "Sierra de las Minas" in Guatemala, by using a conceptual distributed model and considering the lack of data, WITpress, 97–108, 2008.

Moriasi, D., Arnold, J., Van Liew, M. W., Bingner, R., Harme, R., and Veith, T.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, T. ASAE, 50, 885–900, 2007.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models – Part 1 – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Nehyba, S., Nývlt., D., Schkade, U., Kirchner, G., and Francu, E.: Depositional rates and dating techniques of modern deposits in the Brno reservoir (Czech Republic) during the last 70 years, J. Paleolimnol., 45, 41–55, https://doi.org/10.1007/s10933-010-9478-5, 2011.

Neil, D. and Mazari, R.: Sediment yield mapping using small dam sedimentation surveys, Southern Tablelands, New South Wales, Catena, 20, 13–25, https://doi.org/10.1016/0341-8162(93)90026-L, 1993.

Ogden, F. L. and Heilig, A.: Two-dimensional watershed-scale erosion modeling with CASC2D, Landscape Erosion and Evolution Modeling, (RS Harmon and WW Doe III, eds.), Kluwer Academic Publishers, New York, ISBN 0-306-4618-6, 2001.

Phillips, C. J. and Nelson, C. S.: Sedimentation in an artifical lake – Lake Matahina, Bay of Plenty, New Zeal. J. Mar. Fresh, 15, 459–473, https://doi.org/10.1080/00288330.1981.9515938, 1981.

Piest, R. F., Bradford, J. M., and Wyatt, G. M.: Soil erosion and sediment transport from gullies, J. Hydr. Eng. Div-ASCE, 101, 65–80, 1975.

Prosser, I. P. and Rustomji, P.: Sediment transport capacity relations for overland flow, Prog. Phys. Geogr., 24, 179–193, https://doi.org/10.1177/030913330002400202, 2000.

Prosser, I. and Williams, L.: The effect of wildfire on runoff and erosion in native Eucalyptus forest, Hydrol. Process., 12, 251–265, https://doi.org/10.1002/(SICI)1099-1085(199802)12:2< 251::AID-HYP574>3.0.CO;2-4, 1998.

Rey-Benayas, J. M., Martins, A., Nicolau, J. M., and Schulz, J.: Abandonment of agricultural land: an overview of drivers and consequences, CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2, 057, https://doi.org/10.1079/PAVSNNR20072057, 2007.

Roering, J. J., Kirchner, J. W., and Dietrich, W. E.: Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resour. Res., 35, 853–870, https://doi.org/10.1029/1998WR900090, 1999.

Rohel, J. W.: Sediment source areas, delivery ratios, and influencing morphological factors, in Symposium of Bari (Italy), International Association of Hydrological Sciences Publication 59, 202–213, Bari (Italy), 1962.

Rojas, R.: GIS-based upland erosion modeling, geovisualization and grid size effects on erosion simulations with CASC2D-SED, PhD Thesis, Colorado State University, 2002.

Romero-Díaz, A., Alonso-Sarriá, F., and Martínez-Lloris, M.: Erosion rates obtained from check-dam sedimentation (SE Spain). A multi-method comparison, Catena, 71, 172–178, https://doi.org/10.1016/j.catena.2006.05.011, 2007.

Rubio, J. L., Sánchez, J., and Forteza, J.: Proyecto LUCDEME. Mapa de suelos de la Comunidad Valenciana, 1995.

Rulli, M., Spada, M., Bozzi, S., Bocchiola, D. and Rosso, R.: Modelling sediment yield in burned areas, in: Sediment budgets: proceedings of the International Symposium on Sediment Budgets: held during the Seventh Scientific Assembly of the International Association of Hydrological Sciences (IAHS), edited by: Horowitz, A. and Walling, D., IAHS Publ. No 292, Foz do Iguaço (Brazil), 162–170, 2005.

Salazar, S., Francés, F., Komma, J., Blume, T., Francke, T., Bronstert, A., and Blöschl, G.: A comparative analysis of the effectiveness of flood management measures based on the concept of "retaining water in the landscape" in different European hydro-climatic regions, Nat. Hazards Earth Syst. Sci., 12, 3287–3306, https://doi.org/10.5194/nhess-12-3287-2012, 2013.

Saxton, K. E. and Rawls, W. J.: Soil water characteristic estimates by texture and organic matter for hydrologic solutions, Soil Sci. Soc. Am. J., 70, 1569–1578, https://doi.org/10.2136/sssaj2005.0117, 2006.

Shakesby, R.: Post-wildfire soil erosion in the Mediterranean: Review and future research directions, Earth-Sci. Rev., 105, 71–100, https://doi.org/10.1016/j.earscirev.2011.01.001, 2011.

Shumm, S. and Lichty, R.: Time, space and causality in geomorphology, Am. J. Sci., 263, 110–119, https://doi.org/10.2475/ajs.263.2.110, 1965.

Sougnez, N., Van Wesemael, B., and Vanacker, V.: Low erosion rates measured for steep, sparsely vegetated catchments in southeast Spain, Catena, 84, 1–11, https://doi.org/10.1016/j.catena.2010.08.010, 2011.

Van den Wall Blake, G.: Siltation and soil erosion survey in Zimbabwe, in: Drainage basin sediment delivery (proceedings of the Albuquerque symposium, August 1986), edited by: Hadley, R., IAHS Publication 159, 69–80, 1986.

Van Rompaey, A., Verstraeten, G., Van Oost, K., Govers, G., and Poesen, J.: Modelling mean annual sediment yield using a distributed approach, Earth Surf. Proc. Land, 26, 1221–1236, https://doi.org/10.1002/esp.275, 2001.

Van Rompaey, A., Vieillefont, V., Jones, R., Montanarella, L., Verstraeten, G., Bazzoffi, P., Dostal, T., Krasa, J., De Vente, J., and Poesen, J.: Validation of soil erosion estimates at European scale, European Soil Bureau Research Report No.13, EUR 20827 EN, Office for Official Publications of the European Communities, Luxembourg, 2003.

Verstraeten, G. and Poesen, J.: Estimating trap efficiency of small reservoirs and ponds: methods and implications for the assessment of sediment yield, Prog. Phys. Geogr., 24, 219–251, https://doi.org/10.1177/030913330002400204, 2000.

Verstraeten, G. and Poesen, J.: Modelling the long-term sediment trap efficiency of small ponds, Hydrol. Process., 15, 2797–2819, https://doi.org/10.1002/hyp.269, 2001.

Verstraeten, G. and Poesen, J.: Using sediment deposits in small ponds to quantify sediment yield from small catchments: possibilities and limitations, Earth Surf. Proc. Land, 27, 1425–1439, https://doi.org/10.1002/esp.439, 2002.

Verstraeten, G., Poesen, J., De Vente, J., and Koninckx, X.: Sediment yield variability in Spain: a quantitative and semiqualitative analysis using reservoir sedimentation rates, Geomorphology, 50, 327–348, https://doi.org/10.1016/S0169-555X(02)00220-9, 2003.

Vélez, J. J., Puricelli, M., López Unzu, F., and Francés, F. : Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework, Hydrol. Earth Syst. Sci., 13, 229–246, https://doi.org/10.5194/hess-13-229-2009, 2009.

White, P., Labadz, J., and Butcher, D.: Sediment yield estimates from reservoir studies: an appraisal of variability in the southern Pennines of the UK, in: Erosion and sediment yield: global and regional perspectives (proceedings of the Exeter symposium, July 1996), edited by: Walling, D. and Webb, B., IAHS Publication 236, Wallingford: IAHS Press, 163–174, 1996.

Wischmeier, W. H. and Mannering, J. V.: Relation of Soil Properties to its Erodibility, Soil Sci. Soc. Am. J., 33, 131–137, 1969.

Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses-a guide to conservation planning, United States Department of Agriculture (USDA), Washington, DC, USA 58 pp., 1978.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record