- -

A bifunctional palladium-acid solid catalyst performs the direct synthesis of cyclohexylanilines and dicyclohexylamines from nitrobenzenes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A bifunctional palladium-acid solid catalyst performs the direct synthesis of cyclohexylanilines and dicyclohexylamines from nitrobenzenes

Show simple item record

Files in this item

dc.contributor.author Rubio Marqués, Paula es_ES
dc.contributor.author Leyva Perez, Antonio es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2015-01-07T11:52:58Z
dc.date.available 2015-01-07T11:52:58Z
dc.date.issued 2013
dc.identifier.issn 1359-7345
dc.identifier.uri http://hdl.handle.net/10251/45848
dc.description.abstract [EN] Nitroderivatives are transformed to cyclohexylanilines at room temperature in good yields and selectivity via a hydrogenation-amine coupling cascade reaction using Pd nanoparticles on carbon as a catalyst and a Bronsted acid. es_ES
dc.description.sponsorship Financial support by Consolider-Ingenio MULTICAT 2010, subprograma de Apoyo a Centros y Universidades de Excelencia Severo Ochoa (SEV 2012 0267), and MAT2009-00889 projects from MICINN is acknowledged. P. R.-M. thanks the Ministry of Education for a concession of a FPU contract. A. L. P thanks ITQ for a contract. We thank Dr J.C. Hernandez-Garrido for the microscopic images.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation MICINN/SEV 2012 0267 es_ES
dc.relation MICINN/MAT2009-00889 es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nitro-compounds es_ES
dc.subject Gold catalysts es_ES
dc.subject Amines es_ES
dc.subject Alcohols es_ES
dc.subject Hydrogenation es_ES
dc.subject Nitroarenes es_ES
dc.subject Amination es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title A bifunctional palladium-acid solid catalyst performs the direct synthesis of cyclohexylanilines and dicyclohexylamines from nitrobenzenes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3cc44064h
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Rubio Marqués, P.; Leyva Perez, A.; Corma Canós, A. (2013). A bifunctional palladium-acid solid catalyst performs the direct synthesis of cyclohexylanilines and dicyclohexylamines from nitrobenzenes. Chemical Communications. 49(74):8160-8162. doi:10.1039/c3cc44064h es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/C3CC44064H es_ES
dc.description.upvformatpinicio 8160 es_ES
dc.description.upvformatpfin 8162 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 49 es_ES
dc.description.issue 74 es_ES
dc.relation.senia 258353
dc.identifier.pmid 23925659
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.relation.references He, J., Kim, J., Yamaguchi, K., & Mizuno, N. (2009). Efficient Catalytic Synthesis of Tertiary and Secondary Amines from Alcohols and Urea. Angewandte Chemie International Edition, 48(52), 9888-9891. doi:10.1002/anie.200905385 es_ES
dc.relation.references Hamid, M. H. S. A., Slatford, P. A., & Williams, J. M. J. (2007). Borrowing Hydrogen in the Activation of Alcohols. Advanced Synthesis & Catalysis, 349(10), 1555-1575. doi:10.1002/adsc.200600638 es_ES
dc.relation.references Merino, E. (2011). Synthesis of azobenzenes: the coloured pieces of molecular materials. Chemical Society Reviews, 40(7), 3835. doi:10.1039/c0cs00183j es_ES
dc.relation.references Blaser, H.-U., Steiner, H., & Studer, M. (2009). Selective Catalytic Hydrogenation of Functionalized Nitroarenes: An Update. ChemCatChem, 1(2), 210-221. doi:10.1002/cctc.200900129 es_ES
dc.relation.references Hayes, K. S. (2001). Industrial processes for manufacturing amines. Applied Catalysis A: General, 221(1-2), 187-195. doi:10.1016/s0926-860x(01)00813-4 es_ES
dc.relation.references Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159 es_ES
dc.relation.references Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2008). N-Dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chemical Communications, (27), 3199. doi:10.1039/b803114b es_ES
dc.relation.references Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2007). A General Ruthenium-Catalyzed Synthesis of Aromatic Amines. Angewandte Chemie International Edition, 46(43), 8291-8294. doi:10.1002/anie.200703119 es_ES
dc.relation.references Deng, G., Chen, W., & Li, C.-J. (2009). An Unusual Peroxide-Mediated Amination of Cycloalkanes with Nitroarenes. Advanced Synthesis & Catalysis, 351(3), 353-356. doi:10.1002/adsc.200800689 es_ES
dc.relation.references Han, S., & Movassaghi, M. (2011). Concise Total Synthesis and Stereochemical Revision of all (−)-Trigonoliimines. Journal of the American Chemical Society, 133(28), 10768-10771. doi:10.1021/ja204597k es_ES
dc.relation.references Pingen, D., Müller, C., & Vogt, D. (2010). Direct Amination of Secondary Alcohols Using Ammonia. Angewandte Chemie International Edition, 49(44), 8130-8133. doi:10.1002/anie.201002583 es_ES
dc.relation.references Corma, A., Ródenas, T., & Sabater, M. (2010). A Bifunctional Pd/MgO Solid Catalyst for the One-Pot Selective N-Monoalkylation of Amines with Alcohols. Chemistry - A European Journal, 16(1), 254-260. doi:10.1002/chem.200901501 es_ES
dc.relation.references Dobereiner, G. E., & Crabtree, R. H. (2010). Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis. Chemical Reviews, 110(2), 681-703. doi:10.1021/cr900202j es_ES
dc.relation.references Prades, A., Corberán, R., Poyatos, M., & Peris, E. (2008). [IrCl2Cp*(NHC)] Complexes as Highly Versatile Efficient Catalysts for the Cross-Coupling of Alcohols and Amines. Chemistry - A European Journal, 14(36), 11474-11479. doi:10.1002/chem.200801580 es_ES
dc.relation.references Corma, A., Concepción, P., & Serna, P. (2007). A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angewandte Chemie International Edition, 46(38), 7266-7269. doi:10.1002/anie.200700823 es_ES
dc.relation.references Corma, A. (2006). Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science, 313(5785), 332-334. doi:10.1126/science.1128383 es_ES
dc.relation.references Grirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401 es_ES
dc.relation.references Huang, S.-Y., Chang, S.-M., & Yeh, C. (2006). Characterization of Surface Composition of Platinum and Ruthenium Nanoalloys Dispersed on Active Carbon. The Journal of Physical Chemistry B, 110(1), 234-239. doi:10.1021/jp054870k es_ES
dc.relation.references Reetz, M. T., & Maase, M. (1999). Redox-Controlled Size-Selective Fabrication of Nanostructured Transition Metal Colloids. Advanced Materials, 11(9), 773-777. doi:10.1002/(sici)1521-4095(199906)11:9<773::aid-adma773>3.0.co;2-1 es_ES


This item appears in the following Collection(s)

Show simple item record