- -

Heat Transfer in a Fluid Through a Porous Medium over a Permeable Stretching Surface with Thermal Radiation and Variable Thermal Conductivity

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Heat Transfer in a Fluid Through a Porous Medium over a Permeable Stretching Surface with Thermal Radiation and Variable Thermal Conductivity

Show full item record

Cortell Bataller, R. (2012). Heat Transfer in a Fluid Through a Porous Medium over a Permeable Stretching Surface with Thermal Radiation and Variable Thermal Conductivity. Canadian Journal of Chemical Engineering. 90(5):1347-1355. doi:10.1002/cjce.20639

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45916

Files in this item

Item Metadata

Title: Heat Transfer in a Fluid Through a Porous Medium over a Permeable Stretching Surface with Thermal Radiation and Variable Thermal Conductivity
Author: Cortell Bataller, Rafael
Issued date:
Abstract:
This paper treats about the flow and heat transfer of a viscous incompressible fluid in a porous medium over a permeable stretching surface taking into account thermal radiation and the variation of the thermal conductivity ...[+]
Subjects: Variable properties , Thermal radiation , Porous media , Permeable stretching sheet
Copyrigths: Cerrado
Source:
Canadian Journal of Chemical Engineering. (issn: 0008-4034 )
DOI: 10.1002/cjce.20639
Publisher:
Wiley
Publisher version: http://dx.doi.org/10.1002/cjce.20639
Type: Artículo

References

Ahmad, N., Siddiqui, Z. U., & Mishra, M. K. (2010). Boundary layer flow and heat transfer past a stretching plate with variable thermal conductivity. International Journal of Non-Linear Mechanics, 45(3), 306-309. doi:10.1016/j.ijnonlinmec.2009.12.006

Ali, M. E. (1995). On thermal boundary layer on a power-law stretched surface with suction or injection. International Journal of Heat and Fluid Flow, 16(4), 280-290. doi:10.1016/0142-727x(95)00001-7

Andersson, H. I., & Aarseth, J. B. (2007). Sakiadis flow with variable fluid properties revisited. International Journal of Engineering Science, 45(2-8), 554-561. doi:10.1016/j.ijengsci.2007.04.012 [+]
Ahmad, N., Siddiqui, Z. U., & Mishra, M. K. (2010). Boundary layer flow and heat transfer past a stretching plate with variable thermal conductivity. International Journal of Non-Linear Mechanics, 45(3), 306-309. doi:10.1016/j.ijnonlinmec.2009.12.006

Ali, M. E. (1995). On thermal boundary layer on a power-law stretched surface with suction or injection. International Journal of Heat and Fluid Flow, 16(4), 280-290. doi:10.1016/0142-727x(95)00001-7

Andersson, H. I., & Aarseth, J. B. (2007). Sakiadis flow with variable fluid properties revisited. International Journal of Engineering Science, 45(2-8), 554-561. doi:10.1016/j.ijengsci.2007.04.012

Anilkumar, D. (2011). Nonsimilar solutions for unsteady mixed convection from a moving vertical plate. Communications in Nonlinear Science and Numerical Simulation, 16(8), 3147-3157. doi:10.1016/j.cnsns.2010.11.017

Attia, H. A. (2006). Unsteady MHD couette flow and heat transfer of dusty fluid with variable physical properties. Applied Mathematics and Computation, 177(1), 308-318. doi:10.1016/j.amc.2005.11.010

Chen, C.-K., & Char, M.-I. (1988). Heat transfer of a continuous, stretching surface with suction or blowing. Journal of Mathematical Analysis and Applications, 135(2), 568-580. doi:10.1016/0022-247x(88)90172-2

Cortell, R. (1993). Numerical solutions for the flow of a fluid of grade three past an infinite porous plate. International Journal of Non-Linear Mechanics, 28(6), 623-626. doi:10.1016/0020-7462(93)90023-e

Cortell, R. (1994). Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet. International Journal of Non-Linear Mechanics, 29(2), 155-161. doi:10.1016/0020-7462(94)90034-5

Cortell, R. (2005). A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Applied Mathematics and Computation, 168(1), 557-566. doi:10.1016/j.amc.2004.09.046

Cortell, R. (2005). Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dynamics Research, 37(4), 231-245. doi:10.1016/j.fluiddyn.2005.05.001

Cortell, R. (2006). Flow and heat transfer of an electrically conducting fluid of second grade over a stretching sheet subject to suction and to a transverse magnetic field. International Journal of Heat and Mass Transfer, 49(11-12), 1851-1856. doi:10.1016/j.ijheatmasstransfer.2005.11.013

Cortell, R. (2007). Toward an understanding of the motion and mass transfer with chemically reactive species for two classes of viscoelastic fluid over a porous stretching sheet. Chemical Engineering and Processing - Process Intensification, 46(10), 982-989. doi:10.1016/j.cep.2007.05.022

Cortell, R. (2007). MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species. Chemical Engineering and Processing: Process Intensification, 46(8), 721-728. doi:10.1016/j.cep.2006.09.008

Cortell, R. (2008). A Numerical Tackling on Sakiadis Flow with Thermal Radiation. Chinese Physics Letters, 25(4), 1340-1342. doi:10.1088/0256-307x/25/4/048

Cortell, R. (2011). Heat and fluid flow due to non-linearly stretching surfaces. Applied Mathematics and Computation, 217(19), 7564-7572. doi:10.1016/j.amc.2011.02.029

Cortell, R. (2011). Suction, viscous dissipation and thermal radiation effects on the flow and heat transfer of a power-law fluid past an infinite porous plate. Chemical Engineering Research and Design, 89(1), 85-93. doi:10.1016/j.cherd.2010.04.017

Crane, L. J. (1970). Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP, 21(4), 645-647. doi:10.1007/bf01587695

Dandapat, B. S., & Gupta, A. S. (1989). Flow and heat transfer in a viscoelastic fluid over a stretching sheet. International Journal of Non-Linear Mechanics, 24(3), 215-219. doi:10.1016/0020-7462(89)90040-1

Datti, P. S., Prasad, K. V., Subhas Abel, M., & Joshi, A. (2004). MHD visco-elastic fluid flow over a non-isothermal stretching sheet. International Journal of Engineering Science, 42(8-9), 935-946. doi:10.1016/j.ijengsci.2003.09.008

Elbashbeshy, E. M. A. (1998). Heat transfer over a stretching surface with variable surface heat flux. Journal of Physics D: Applied Physics, 31(16), 1951-1954. doi:10.1088/0022-3727/31/16/002

Elbashbeshy, E. M. A. (2000). Free convection flow with variable viscosity and thermal diffusivity along a vertical plate in the presence of the magnetic field. International Journal of Engineering Science, 38(2), 207-213. doi:10.1016/s0020-7225(99)00021-x

El-Mistikawy, T. M. A. (2009). Limiting behavior of micropolar flow due to a linearly stretching porous sheet. European Journal of Mechanics - B/Fluids, 28(2), 253-258. doi:10.1016/j.euromechflu.2008.05.002

Fang, T. (2004). Influences of fluid property variation on the boundary layers of a stretching surface. Acta Mechanica, 171(1-2). doi:10.1007/s00707-004-0125-y

Farzaneh-Gord, M., Joneidi, A. A., & Haghighi, B. (2009). Investigating the effects of the important parameters on magnetohydrodynamics flow and heat transfer over a stretching sheet. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 224(1), 1-9. doi:10.1243/09544089jpme258

Gupta, P. S., & Gupta, A. S. (1977). Heat and mass transfer on a stretching sheet with suction or blowing. The Canadian Journal of Chemical Engineering, 55(6), 744-746. doi:10.1002/cjce.5450550619

Gupta, A. S., Misra, J. C., & Reza, M. (2003). Effects of suction or blowing on the velocity and temperature distribution in the flow past a porous flat plate of a power-law fluid. Fluid Dynamics Research, 32(6), 283-294. doi:10.1016/s0169-5983(03)00068-6

Hayat, T., Kara, A. H., & Momoniat, E. (2003). Exact flow of a third-grade fluid on a porous wall. International Journal of Non-Linear Mechanics, 38(10), 1533-1537. doi:10.1016/s0020-7462(02)00116-6

Ishak, A. (2010). Unsteady MHD Flow and Heat Transfer over a Stretching Plate. Journal of Applied Sciences, 10(18), 2127-2131. doi:10.3923/jas.2010.2127.2131

Ishak, A., Nazar, R., & Pop, I. (2009). The effects of transpiration on the flow and heat transfer over a moving permeable surface in a parallel stream. Chemical Engineering Journal, 148(1), 63-67. doi:10.1016/j.cej.2008.07.040

Joneidi, A. A., Domairry, G., & Babaelahi, M. (2010). Analytical treatment of MHD free convective flow and mass transfer over a stretching sheet with chemical reaction. Journal of the Taiwan Institute of Chemical Engineers, 41(1), 35-43. doi:10.1016/j.jtice.2009.05.008

Li, B., Zheng, L., & Zhang, X. (2011). Heat transfer in pseudo-plastic non-Newtonian fluids with variable thermal conductivity. Energy Conversion and Management, 52(1), 355-358. doi:10.1016/j.enconman.2010.07.008

Mahmoud, M. A. A. (2007). Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity. Physica A: Statistical Mechanics and its Applications, 375(2), 401-410. doi:10.1016/j.physa.2006.09.010

Mahmoud, M. A. A. (2009). Thermal radiation effect on unsteady MHD free convection flow past a vertical plate with temperature-dependent viscosity. The Canadian Journal of Chemical Engineering, 87(1), 47-52. doi:10.1002/cjce.20135

Makinde, O. D. (2010). On MHD heat and mass transfer over a moving vertical plate with a convective surface boundary condition. The Canadian Journal of Chemical Engineering, 88(6), 983-990. doi:10.1002/cjce.20369

Makinde, O. D. (2010). MHD MIXED-CONVECTION INTERACTION WITH THERMAL RADIATION AND nTH ORDER CHEMICAL REACTION PAST A VERTICAL POROUS PLATE EMBEDDED IN A POROUS MEDIUM. Chemical Engineering Communications, 198(4), 590-608. doi:10.1080/00986445.2010.500151

Makinde, O. D., & Aziz, A. (2010). MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition. International Journal of Thermal Sciences, 49(9), 1813-1820. doi:10.1016/j.ijthermalsci.2010.05.015

Malekzadeh, P., Moghimi, M. A., & Nickaeen, M. (2011). The radiation and variable viscosity effects on electrically conducting fluid over a vertically moving plate subjected to suction and heat flux. Energy Conversion and Management, 52(5), 2040-2047. doi:10.1016/j.enconman.2010.12.006

Narahari, M., & Ishak, A. (2011). Radiation Effects on Free Convection Flow Near a Moving Vertical Plate with Newtonian Heating. Journal of Applied Sciences, 11(7), 1096-1104. doi:10.3923/jas.2011.1096.1104

Pop, I., Gorla, R. S. R., & Rashidi, M. (1992). The effect of variable viscosity on flow and heat transfer to a continuous moving flat plate. International Journal of Engineering Science, 30(1), 1-6. doi:10.1016/0020-7225(92)90115-w

Prasad, K. V., Vajravelu, K., & Datti, P. S. (2010). The effects of variable fluid properties on the hydro-magnetic flow and heat transfer over a non-linearly stretching sheet. International Journal of Thermal Sciences, 49(3), 603-610. doi:10.1016/j.ijthermalsci.2009.08.005

Prasad, K. V., Vajravelu, K., & van Gorder, R. A. (2011). Non-Darcian flow and heat transfer along a permeable vertical surface with nonlinear density temperature variation. Acta Mechanica, 220(1-4), 139-154. doi:10.1007/s00707-011-0474-2

Rahman, M. M., & Al-Lawatia, M. (2010). Effects of higher order chemical reaction on micropolar fluid flow on a power law permeable stretched sheet with variable concentration in a porous medium. The Canadian Journal of Chemical Engineering, 88(1), 23-32. doi:10.1002/cjce.20244

Rajagopal, K. R., Na, T. Y., & Gupta, A. S. (1984). Flow of a viscoelastic fluid over a stretching sheet. Rheologica Acta, 23(2), 213-215. doi:10.1007/bf01332078

Sakiadis, B. C. (1961). Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE Journal, 7(1), 26-28. doi:10.1002/aic.690070108

Sakiadis, B. C. (1961). Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AIChE Journal, 7(2), 221-225. doi:10.1002/aic.690070211

Salem, A. M., El-Aziz, M. A., Abo-Eldahab, E. M., & Abd-Elfatah, I. (2010). Effect of variable density on hydromagnetic mixed convection flow of a non-Newtonian fluid past a moving vertical plate. Communications in Nonlinear Science and Numerical Simulation, 15(6), 1485-1493. doi:10.1016/j.cnsns.2009.06.005

Seddeek, M. A. (2002). Effects of radiation and variable viscosity on a MHD free convection flow past a semi-infinite flat plate with an aligned magnetic field in the case of unsteady flow. International Journal of Heat and Mass Transfer, 45(4), 931-935. doi:10.1016/s0017-9310(01)00189-2

Seddeek, M. A., & Abdelmeguid, M. S. (2006). Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux. Physics Letters A, 348(3-6), 172-179. doi:10.1016/j.physleta.2005.01.101

Seddeek, M. A., & Salem, A. M. (2006). Further results on the variable viscosity with magnetic field on flow and heat transfer to a continuous moving flat plate. Physics Letters A, 353(4), 337-340. doi:10.1016/j.physleta.2005.12.095

Seddeek, M. A., Odda, S. N., & Abdelmeguid, M. S. (2009). Numerical study for the effects of thermophoresis and variable thermal conductivity on heat and mass transfer over an accelerating surface with heat source. Computational Materials Science, 47(1), 93-98. doi:10.1016/j.commatsci.2009.06.020

Shateyi, S., Motsa, S. S., & Sibanda, P. (2010). Homotopy analysis of heat and mass transfer boundary layer flow through a non-porous channel with chemical reaction and heat generation. The Canadian Journal of Chemical Engineering, 88(6), 975-982. doi:10.1002/cjce.20366

Vajravelu, K. (1994). Flow and Heat Transfer in a Saturated Porous Medium over a Stretching Surface. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 74(12), 605-614. doi:10.1002/zamm.19940741209

Vleggaar, J. (1977). Laminar boundary-layer behaviour on continuous, accelerating surfaces. Chemical Engineering Science, 32(12), 1517-1525. doi:10.1016/0009-2509(77)80249-2

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record