- -

Heat Transfer in a Fluid Through a Porous Medium over a Permeable Stretching Surface with Thermal Radiation and Variable Thermal Conductivity

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Heat Transfer in a Fluid Through a Porous Medium over a Permeable Stretching Surface with Thermal Radiation and Variable Thermal Conductivity

Show simple item record

Files in this item

dc.contributor.author Cortell Bataller, Rafael es_ES
dc.date.accessioned 2015-01-09T10:19:06Z
dc.date.available 2015-01-09T10:19:06Z
dc.date.issued 2012
dc.identifier.issn 0008-4034
dc.identifier.uri http://hdl.handle.net/10251/45916
dc.description.abstract This paper treats about the flow and heat transfer of a viscous incompressible fluid in a porous medium over a permeable stretching surface taking into account thermal radiation and the variation of the thermal conductivity with temperature. Analytical solutions for the stream function are obtained and two cases are studied, namely, (i) prescribed surface temperature (PST case) and (ii) prescribed heat flux (PHF case). The effects of Prandtl number, permeability, suction/blowing, variable thermal conductivity, thermal radiation and surface temperature parameters on heat-transfer characteristics are shown through tables and graphs and discussed. (c) 2011 Canadian Society for Chemical Engineering es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Canadian Journal of Chemical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Variable properties es_ES
dc.subject Thermal radiation es_ES
dc.subject Porous media es_ES
dc.subject Permeable stretching sheet es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Heat Transfer in a Fluid Through a Porous Medium over a Permeable Stretching Surface with Thermal Radiation and Variable Thermal Conductivity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cjce.20639
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Cortell Bataller, R. (2012). Heat Transfer in a Fluid Through a Porous Medium over a Permeable Stretching Surface with Thermal Radiation and Variable Thermal Conductivity. Canadian Journal of Chemical Engineering. 90(5):1347-1355. doi:10.1002/cjce.20639 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cjce.20639 es_ES
dc.description.upvformatpinicio 1347 es_ES
dc.description.upvformatpfin 1355 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 90 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 224002
dc.description.references Ahmad, N., Siddiqui, Z. U., & Mishra, M. K. (2010). Boundary layer flow and heat transfer past a stretching plate with variable thermal conductivity. International Journal of Non-Linear Mechanics, 45(3), 306-309. doi:10.1016/j.ijnonlinmec.2009.12.006 es_ES
dc.description.references Ali, M. E. (1995). On thermal boundary layer on a power-law stretched surface with suction or injection. International Journal of Heat and Fluid Flow, 16(4), 280-290. doi:10.1016/0142-727x(95)00001-7 es_ES
dc.description.references Andersson, H. I., & Aarseth, J. B. (2007). Sakiadis flow with variable fluid properties revisited. International Journal of Engineering Science, 45(2-8), 554-561. doi:10.1016/j.ijengsci.2007.04.012 es_ES
dc.description.references Anilkumar, D. (2011). Nonsimilar solutions for unsteady mixed convection from a moving vertical plate. Communications in Nonlinear Science and Numerical Simulation, 16(8), 3147-3157. doi:10.1016/j.cnsns.2010.11.017 es_ES
dc.description.references Attia, H. A. (2006). Unsteady MHD couette flow and heat transfer of dusty fluid with variable physical properties. Applied Mathematics and Computation, 177(1), 308-318. doi:10.1016/j.amc.2005.11.010 es_ES
dc.description.references Chen, C.-K., & Char, M.-I. (1988). Heat transfer of a continuous, stretching surface with suction or blowing. Journal of Mathematical Analysis and Applications, 135(2), 568-580. doi:10.1016/0022-247x(88)90172-2 es_ES
dc.description.references Cortell, R. (1993). Numerical solutions for the flow of a fluid of grade three past an infinite porous plate. International Journal of Non-Linear Mechanics, 28(6), 623-626. doi:10.1016/0020-7462(93)90023-e es_ES
dc.description.references Cortell, R. (1994). Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet. International Journal of Non-Linear Mechanics, 29(2), 155-161. doi:10.1016/0020-7462(94)90034-5 es_ES
dc.description.references Cortell, R. (2005). A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Applied Mathematics and Computation, 168(1), 557-566. doi:10.1016/j.amc.2004.09.046 es_ES
dc.description.references Cortell, R. (2005). Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dynamics Research, 37(4), 231-245. doi:10.1016/j.fluiddyn.2005.05.001 es_ES
dc.description.references Cortell, R. (2006). Flow and heat transfer of an electrically conducting fluid of second grade over a stretching sheet subject to suction and to a transverse magnetic field. International Journal of Heat and Mass Transfer, 49(11-12), 1851-1856. doi:10.1016/j.ijheatmasstransfer.2005.11.013 es_ES
dc.description.references Cortell, R. (2007). Toward an understanding of the motion and mass transfer with chemically reactive species for two classes of viscoelastic fluid over a porous stretching sheet. Chemical Engineering and Processing - Process Intensification, 46(10), 982-989. doi:10.1016/j.cep.2007.05.022 es_ES
dc.description.references Cortell, R. (2007). MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species. Chemical Engineering and Processing: Process Intensification, 46(8), 721-728. doi:10.1016/j.cep.2006.09.008 es_ES
dc.description.references Cortell, R. (2008). A Numerical Tackling on Sakiadis Flow with Thermal Radiation. Chinese Physics Letters, 25(4), 1340-1342. doi:10.1088/0256-307x/25/4/048 es_ES
dc.description.references Cortell, R. (2011). Heat and fluid flow due to non-linearly stretching surfaces. Applied Mathematics and Computation, 217(19), 7564-7572. doi:10.1016/j.amc.2011.02.029 es_ES
dc.description.references Cortell, R. (2011). Suction, viscous dissipation and thermal radiation effects on the flow and heat transfer of a power-law fluid past an infinite porous plate. Chemical Engineering Research and Design, 89(1), 85-93. doi:10.1016/j.cherd.2010.04.017 es_ES
dc.description.references Crane, L. J. (1970). Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP, 21(4), 645-647. doi:10.1007/bf01587695 es_ES
dc.description.references Dandapat, B. S., & Gupta, A. S. (1989). Flow and heat transfer in a viscoelastic fluid over a stretching sheet. International Journal of Non-Linear Mechanics, 24(3), 215-219. doi:10.1016/0020-7462(89)90040-1 es_ES
dc.description.references Datti, P. S., Prasad, K. V., Subhas Abel, M., & Joshi, A. (2004). MHD visco-elastic fluid flow over a non-isothermal stretching sheet. International Journal of Engineering Science, 42(8-9), 935-946. doi:10.1016/j.ijengsci.2003.09.008 es_ES
dc.description.references Elbashbeshy, E. M. A. (1998). Heat transfer over a stretching surface with variable surface heat flux. Journal of Physics D: Applied Physics, 31(16), 1951-1954. doi:10.1088/0022-3727/31/16/002 es_ES
dc.description.references Elbashbeshy, E. M. A. (2000). Free convection flow with variable viscosity and thermal diffusivity along a vertical plate in the presence of the magnetic field. International Journal of Engineering Science, 38(2), 207-213. doi:10.1016/s0020-7225(99)00021-x es_ES
dc.description.references El-Mistikawy, T. M. A. (2009). Limiting behavior of micropolar flow due to a linearly stretching porous sheet. European Journal of Mechanics - B/Fluids, 28(2), 253-258. doi:10.1016/j.euromechflu.2008.05.002 es_ES
dc.description.references Fang, T. (2004). Influences of fluid property variation on the boundary layers of a stretching surface. Acta Mechanica, 171(1-2). doi:10.1007/s00707-004-0125-y es_ES
dc.description.references Farzaneh-Gord, M., Joneidi, A. A., & Haghighi, B. (2009). Investigating the effects of the important parameters on magnetohydrodynamics flow and heat transfer over a stretching sheet. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 224(1), 1-9. doi:10.1243/09544089jpme258 es_ES
dc.description.references Gupta, P. S., & Gupta, A. S. (1977). Heat and mass transfer on a stretching sheet with suction or blowing. The Canadian Journal of Chemical Engineering, 55(6), 744-746. doi:10.1002/cjce.5450550619 es_ES
dc.description.references Gupta, A. S., Misra, J. C., & Reza, M. (2003). Effects of suction or blowing on the velocity and temperature distribution in the flow past a porous flat plate of a power-law fluid. Fluid Dynamics Research, 32(6), 283-294. doi:10.1016/s0169-5983(03)00068-6 es_ES
dc.description.references Hayat, T., Kara, A. H., & Momoniat, E. (2003). Exact flow of a third-grade fluid on a porous wall. International Journal of Non-Linear Mechanics, 38(10), 1533-1537. doi:10.1016/s0020-7462(02)00116-6 es_ES
dc.description.references Ishak, A. (2010). Unsteady MHD Flow and Heat Transfer over a Stretching Plate. Journal of Applied Sciences, 10(18), 2127-2131. doi:10.3923/jas.2010.2127.2131 es_ES
dc.description.references Ishak, A., Nazar, R., & Pop, I. (2009). The effects of transpiration on the flow and heat transfer over a moving permeable surface in a parallel stream. Chemical Engineering Journal, 148(1), 63-67. doi:10.1016/j.cej.2008.07.040 es_ES
dc.description.references Joneidi, A. A., Domairry, G., & Babaelahi, M. (2010). Analytical treatment of MHD free convective flow and mass transfer over a stretching sheet with chemical reaction. Journal of the Taiwan Institute of Chemical Engineers, 41(1), 35-43. doi:10.1016/j.jtice.2009.05.008 es_ES
dc.description.references Li, B., Zheng, L., & Zhang, X. (2011). Heat transfer in pseudo-plastic non-Newtonian fluids with variable thermal conductivity. Energy Conversion and Management, 52(1), 355-358. doi:10.1016/j.enconman.2010.07.008 es_ES
dc.description.references Mahmoud, M. A. A. (2007). Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity. Physica A: Statistical Mechanics and its Applications, 375(2), 401-410. doi:10.1016/j.physa.2006.09.010 es_ES
dc.description.references Mahmoud, M. A. A. (2009). Thermal radiation effect on unsteady MHD free convection flow past a vertical plate with temperature-dependent viscosity. The Canadian Journal of Chemical Engineering, 87(1), 47-52. doi:10.1002/cjce.20135 es_ES
dc.description.references Makinde, O. D. (2010). On MHD heat and mass transfer over a moving vertical plate with a convective surface boundary condition. The Canadian Journal of Chemical Engineering, 88(6), 983-990. doi:10.1002/cjce.20369 es_ES
dc.description.references Makinde, O. D. (2010). MHD MIXED-CONVECTION INTERACTION WITH THERMAL RADIATION AND nTH ORDER CHEMICAL REACTION PAST A VERTICAL POROUS PLATE EMBEDDED IN A POROUS MEDIUM. Chemical Engineering Communications, 198(4), 590-608. doi:10.1080/00986445.2010.500151 es_ES
dc.description.references Makinde, O. D., & Aziz, A. (2010). MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition. International Journal of Thermal Sciences, 49(9), 1813-1820. doi:10.1016/j.ijthermalsci.2010.05.015 es_ES
dc.description.references Malekzadeh, P., Moghimi, M. A., & Nickaeen, M. (2011). The radiation and variable viscosity effects on electrically conducting fluid over a vertically moving plate subjected to suction and heat flux. Energy Conversion and Management, 52(5), 2040-2047. doi:10.1016/j.enconman.2010.12.006 es_ES
dc.description.references Narahari, M., & Ishak, A. (2011). Radiation Effects on Free Convection Flow Near a Moving Vertical Plate with Newtonian Heating. Journal of Applied Sciences, 11(7), 1096-1104. doi:10.3923/jas.2011.1096.1104 es_ES
dc.description.references Pop, I., Gorla, R. S. R., & Rashidi, M. (1992). The effect of variable viscosity on flow and heat transfer to a continuous moving flat plate. International Journal of Engineering Science, 30(1), 1-6. doi:10.1016/0020-7225(92)90115-w es_ES
dc.description.references Prasad, K. V., Vajravelu, K., & Datti, P. S. (2010). The effects of variable fluid properties on the hydro-magnetic flow and heat transfer over a non-linearly stretching sheet. International Journal of Thermal Sciences, 49(3), 603-610. doi:10.1016/j.ijthermalsci.2009.08.005 es_ES
dc.description.references Prasad, K. V., Vajravelu, K., & van Gorder, R. A. (2011). Non-Darcian flow and heat transfer along a permeable vertical surface with nonlinear density temperature variation. Acta Mechanica, 220(1-4), 139-154. doi:10.1007/s00707-011-0474-2 es_ES
dc.description.references Rahman, M. M., & Al-Lawatia, M. (2010). Effects of higher order chemical reaction on micropolar fluid flow on a power law permeable stretched sheet with variable concentration in a porous medium. The Canadian Journal of Chemical Engineering, 88(1), 23-32. doi:10.1002/cjce.20244 es_ES
dc.description.references Rajagopal, K. R., Na, T. Y., & Gupta, A. S. (1984). Flow of a viscoelastic fluid over a stretching sheet. Rheologica Acta, 23(2), 213-215. doi:10.1007/bf01332078 es_ES
dc.description.references Sakiadis, B. C. (1961). Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE Journal, 7(1), 26-28. doi:10.1002/aic.690070108 es_ES
dc.description.references Sakiadis, B. C. (1961). Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AIChE Journal, 7(2), 221-225. doi:10.1002/aic.690070211 es_ES
dc.description.references Salem, A. M., El-Aziz, M. A., Abo-Eldahab, E. M., & Abd-Elfatah, I. (2010). Effect of variable density on hydromagnetic mixed convection flow of a non-Newtonian fluid past a moving vertical plate. Communications in Nonlinear Science and Numerical Simulation, 15(6), 1485-1493. doi:10.1016/j.cnsns.2009.06.005 es_ES
dc.description.references Seddeek, M. A. (2002). Effects of radiation and variable viscosity on a MHD free convection flow past a semi-infinite flat plate with an aligned magnetic field in the case of unsteady flow. International Journal of Heat and Mass Transfer, 45(4), 931-935. doi:10.1016/s0017-9310(01)00189-2 es_ES
dc.description.references Seddeek, M. A., & Abdelmeguid, M. S. (2006). Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux. Physics Letters A, 348(3-6), 172-179. doi:10.1016/j.physleta.2005.01.101 es_ES
dc.description.references Seddeek, M. A., & Salem, A. M. (2006). Further results on the variable viscosity with magnetic field on flow and heat transfer to a continuous moving flat plate. Physics Letters A, 353(4), 337-340. doi:10.1016/j.physleta.2005.12.095 es_ES
dc.description.references Seddeek, M. A., Odda, S. N., & Abdelmeguid, M. S. (2009). Numerical study for the effects of thermophoresis and variable thermal conductivity on heat and mass transfer over an accelerating surface with heat source. Computational Materials Science, 47(1), 93-98. doi:10.1016/j.commatsci.2009.06.020 es_ES
dc.description.references Shateyi, S., Motsa, S. S., & Sibanda, P. (2010). Homotopy analysis of heat and mass transfer boundary layer flow through a non-porous channel with chemical reaction and heat generation. The Canadian Journal of Chemical Engineering, 88(6), 975-982. doi:10.1002/cjce.20366 es_ES
dc.description.references Vajravelu, K. (1994). Flow and Heat Transfer in a Saturated Porous Medium over a Stretching Surface. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 74(12), 605-614. doi:10.1002/zamm.19940741209 es_ES
dc.description.references Vleggaar, J. (1977). Laminar boundary-layer behaviour on continuous, accelerating surfaces. Chemical Engineering Science, 32(12), 1517-1525. doi:10.1016/0009-2509(77)80249-2 es_ES


This item appears in the following Collection(s)

Show simple item record