- -

Effect of the addition of plant extracts on the microbiota of minimally processed strawberry jam and its physicochemical and sensorial properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of the addition of plant extracts on the microbiota of minimally processed strawberry jam and its physicochemical and sensorial properties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gómez, F. es_ES
dc.contributor.author Igual Ramo, Marta es_ES
dc.contributor.author Camacho Vidal, Mª Mar es_ES
dc.contributor.author Pagán Moreno, Mª Jesús es_ES
dc.date.accessioned 2015-01-09T11:09:07Z
dc.date.available 2015-01-09T11:09:07Z
dc.date.issued 2013-05
dc.identifier.issn 1947-6345
dc.identifier.uri http://hdl.handle.net/10251/45922
dc.description.abstract extract addition (pomegranate, rosemary, lemon and balsamic lemon) have been applied to strawberry jam obtained by osmotic dehydration in order to avoid its fast decline. Microbiological, physicochemical and sensorial parameters have been evaluated to compare product quality. Different doses of plant extract were tested to select those with the greatest antibacterial potential. Before determining its antimicrobial potential, the behaviour of the microbiota present in the strawberry jam was analysed using predictive microbiology. Moreover, the samples were analysed for moisture content, soluble solids, pH, water activity, colour and consistency. Strawberry jams were sensorially analysed. Pomegranate extract showed the highest level of antimicrobial activity. Jams with pomegranate showed significantly lower values in colour parameters than the control jam. However, there were no significant colour differences between jams with different doses of pomegranate extract. Jams without extracts were more consistent. In the sensory analysis, tasters found the studied samples to be very similar es_ES
dc.description.abstract La adicio´n de extractos vegetales (granada, romero, limo´n, limo´n balsa´mico) ha sido utilizada para mermeladas de fresa obtenidas por deshidratacio´n osmo´tica con el fin de evitar su ra´pido deterioro. En este trabajo, se han evaluado los para´metros microbiolo´gicos, fı´sico-quı´micos y sensoriales del producto para su comparacio´n. Para ello, se testaron diferentes dosis de extractos vegetales en las muestras para seleccionar la de mayor potencial antibacteriano. Anteriormente, se analizo´ el comportamiento de la microbiota presente en la mermelada (meso´filos aerobios, bacterias a´cido la´cticas, coliformes, mohos y levaduras). Adema´s, las muestras se analizaron en cuanto a su contenido en humedad, so´lidos solubles, pH, actividad del agua, color y consistencia. La memelada de fresa con y sin extractos fue analizada sensorialmente mediante una prueba de comparacio´n pareada con un panel de 26 catadores. El extracto de granada mostro´ el mayor nivel de actividad antimicrobiana frente a la microbiota de la mermelada de fresa, establecie´ndose una concentracio´n mı´nima inhibitoria de 0,001 g / ml o 0,0005 g / ml si lo definimos como el nivel mı´nimo de concentracio´n de extracto natural que produce una reduccio´n del 90% en el crecimiento de colonias microbianas o una inhibicio´n completa del crecimiento visible, respectivamente. Las mermeladas con extracto de granada mostraron valores significativamente ma´s bajos en los para´metros de color que la muestra control. Sin embargo, no hubo diferencias significativas de color entre las mermeladas con diferentes dosis de extracto de granada. Las mermeladas sin extracto fueron ma´s consistentes. En el ana´lisis sensorial, las muestras estudiadas fueron muy similares para los catadores es_ES
dc.description.sponsorship The authors wish to thank the Ministerio de Educacion y Ciencia for the financial support given throughout projects AGL 2005-05994. The revision of this paper was funded by the Universidad Politecnica de Valencia, Spain. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis: STM, Behavioural Science and Public Health Titles es_ES
dc.relation.ispartof CyTA - Journal of Food es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Strawberry jam es_ES
dc.subject Osmotic dehydration es_ES
dc.subject Plant extract es_ES
dc.subject Antimicrobia es_ES
dc.subject Microbiology es_ES
dc.subject Sensory evaluation es_ES
dc.subject Mermelada de fresa es_ES
dc.subject Deshidratacioón osmótica es_ES
dc.subject Extracto de planta es_ES
dc.subject Antimicrobiano es_ES
dc.subject Microbiología es_ES
dc.subject Evaluación sensorial es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effect of the addition of plant extracts on the microbiota of minimally processed strawberry jam and its physicochemical and sensorial properties es_ES
dc.title.alternative Efecto de la adición de extractos vegetales en la microbiota y en las propiedades fisicoquímicas y sensoriales de mermelada de fresa mínimamente procesada es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/19476337.2012.712058
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AGL2005-05994/ES/ESTABILIDAD DE LOS COMPUESTOS FUNCIONALES DE LAS FRUTAS DURANTE SU PROCESADO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Gómez, F.; Igual Ramo, M.; Camacho Vidal, MM.; Pagán Moreno, MJ. (2013). Effect of the addition of plant extracts on the microbiota of minimally processed strawberry jam and its physicochemical and sensorial properties. CyTA - Journal of Food. 11(2):171-178. https://doi.org/10.1080/19476337.2012.712058 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/19476337.2012.712058 es_ES
dc.description.upvformatpinicio 171 es_ES
dc.description.upvformatpfin 178 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 242241
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Alma, M. H., Nitz, S., Kollmannsberger, H., Digrak, M., Efe, F. T., & Yilmaz, N. (2004). Chemical Composition and Antimicrobial Activity of the Essential Oils from the Gum of Turkish Pistachio (Pistacia veraL.). Journal of Agricultural and Food Chemistry, 52(12), 3911-3914. doi:10.1021/jf040014e es_ES
dc.description.references Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23(3-4), 277-294. doi:10.1016/0168-1605(94)90157-0 es_ES
dc.description.references FARBOOD, M. I., MacNEIL, J. H., & OSTOVAR, K. (1976). Effect of Rosemary Spice Extractive on Growth of Microorganisms in Meats. Journal of Milk and Food Technology, 39(10), 675-679. doi:10.4315/0022-2747-39.10.675 es_ES
dc.description.references GACHKAR, L., YADEGARI, D., REZAEI, M., TAGHIZADEH, M., ASTANEH, S., & RASOOLI, I. (2007). Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chemistry, 102(3), 898-904. doi:10.1016/j.foodchem.2006.06.035 es_ES
dc.description.references Garcı́a-Martı́nez, E., Ruiz-Diaz, G., Martı́nez-Monzó, J., Camacho, M. ., Martı́nez-Navarrete, N., & Chiralt, A. (2002). Jam manufacture with osmodehydrated fruit. Food Research International, 35(2-3), 301-306. doi:10.1016/s0963-9969(01)00200-9 es_ES
dc.description.references Gil, M. I., Tomás-Barberán, F. A., Hess-Pierce, B., Holcroft, D. M., & Kader, A. A. (2000). Antioxidant Activity of Pomegranate Juice and Its Relationship with Phenolic Composition and Processing. Journal of Agricultural and Food Chemistry, 48(10), 4581-4589. doi:10.1021/jf000404a es_ES
dc.description.references Heredia, A., Barrera, C., & Andrés, A. (2007). Drying of cherry tomato by a combination of different dehydration techniques. Comparison of kinetics and other related properties. Journal of Food Engineering, 80(1), 111-118. doi:10.1016/j.jfoodeng.2006.04.056 es_ES
dc.description.references Heredia, A., Peinado, I., Barrera, C., & Grau, A. A. (2009). Influence of process variables on colour changes, carotenoids retention and cellular tissue alteration of cherry tomato during osmotic dehydration. Journal of Food Composition and Analysis, 22(4), 285-294. doi:10.1016/j.jfca.2008.11.018 es_ES
dc.description.references Holcroft, D. M., & Kader, A. A. (1999). Controlled atmosphere-induced changes in pH and organic acid metabolism may affect color of stored strawberry fruit. Postharvest Biology and Technology, 17(1), 19-32. doi:10.1016/s0925-5214(99)00023-x es_ES
dc.description.references Igual, M., Contreras, C., & Martínez-Navarrete, N. (2010). Non-conventional techniques to obtain grapefruit jam. Innovative Food Science & Emerging Technologies, 11(2), 335-341. doi:10.1016/j.ifset.2010.01.009 es_ES
dc.description.references Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118(2), 291-299. doi:10.1016/j.foodchem.2009.04.118 es_ES
dc.description.references INATANI, R., FUWA, H., SETO, H., & NAKATANI, N. (1982). Structure of a new antioxidative phenolic diterpene isolated from rosemary (Rosmarinus officinalis L.). Agricultural and Biological Chemistry, 46(6), 1661-1666. doi:10.1271/bbb1961.46.1661 es_ES
dc.description.references Jia, H. L., Ji, Q. L., Xing, S. L., Zhang, P. H., Zhu, G. L., & Wang, X. H. (2010). Chemical Composition and Antioxidant, Antimicrobial Activities of the Essential Oils ofâ Thymus marschallianusâ Will. andâ Thymus proximusâ Serg. Journal of Food Science, 75(1), E59-E65. doi:10.1111/j.1750-3841.2009.01413.x es_ES
dc.description.references Krishnamurthy, Y. L., & Shashikala, J. (2006). Inhibition of aflatoxin B1production ofAspergillus flavus, isolated from soybean seeds by certain natural plant products. Letters in Applied Microbiology, 43(5), 469-474. doi:10.1111/j.1472-765x.2006.02011.x es_ES
dc.description.references Machado, T. de B., Leal, I. C. R., Amaral, A. C. F., Santos, K. R. N. dos, Silva, M. G. da, & Kuster, R. M. (2002). Antimicrobial Ellagitannin of Punica granatum Fruits. Journal of the Brazilian Chemical Society, 13(5), 606-610. doi:10.1590/s0103-50532002000500010 es_ES
dc.description.references Madrigal-Carballo, S., Rodriguez, G., Krueger, C. G., Dreher, M., & Reed, J. D. (2009). Pomegranate (Punica granatum) supplements: Authenticity, antioxidant and polyphenol composition. Journal of Functional Foods, 1(3), 324-329. doi:10.1016/j.jff.2009.02.005 es_ES
dc.description.references Meilgaard, M., Vance Civille, G., & Thomas Carr, B. (1999). Sensory Evaluation Techniques, Third Edition. doi:10.1201/9781439832271 es_ES
dc.description.references NAKATANI, N., & INATANI, R. (1981). Structure of rosmanol, a new antioxidant from rosemary (Rosmarinus officinalis L.). Agricultural and Biological Chemistry, 45(10), 2385-2386. doi:10.1271/bbb1961.45.2385 es_ES
dc.description.references Negi, P. S., & Jayaprakasha, G. K. (2003). Antioxidant and Antibacterial Activities of Punica granatum Peel Extracts. Journal of Food Science, 68(4), 1473-1477. doi:10.1111/j.1365-2621.2003.tb09669.x es_ES
dc.description.references Pandit, V. A., & Shelef, L. A. (1994). Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food Microbiology, 11(1), 57-63. doi:10.1006/fmic.1994.1008 es_ES
dc.description.references Pérez-Fons, L., GarzÓn, M. T., & Micol, V. (2010). Relationship between the Antioxidant Capacity and Effect of Rosemary (Rosmarinus officinalis L.) Polyphenols on Membrane Phospholipid Order. Journal of Agricultural and Food Chemistry, 58(1), 161-171. doi:10.1021/jf9026487 es_ES
dc.description.references Pérez-Vicente, A., Serrano, P., Abellán, P., & García-Viguera, C. (2004). Influence of packaging material on pomegranate juice colour and bioactive compounds, during storage. Journal of the Science of Food and Agriculture, 84(7), 639-644. doi:10.1002/jsfa.1721 es_ES
dc.description.references Ponce, A. G., Fritz, R., del Valle, C., & Roura, S. I. (2003). Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT - Food Science and Technology, 36(7), 679-684. doi:10.1016/s0023-6438(03)00088-4 es_ES
dc.description.references Prigent, S. V. E., Gruppen, H., Visser, A. J. W. G., van Koningsveld, G. A., de Jong, G. A. H., & Voragen, A. G. J. (2003). Effects of Non-covalent Interactions with 5-O-Caffeoylquinic Acid (Chlorogenic Acid) on the Heat Denaturation and Solubility of Globular Proteins. Journal of Agricultural and Food Chemistry, 51(17), 5088-5095. doi:10.1021/jf021229w es_ES
dc.description.references Rodov, V., Ben-Yehoshua, S., Fang, D. Q., Kim, J. J., & Ashkenazi, R. (1995). Preformed antifungal compounds of lemon fruit: citral and its relation to disease resistance. Journal of Agricultural and Food Chemistry, 43(4), 1057-1061. doi:10.1021/jf00052a039 es_ES
dc.description.references Rubino, M. I., Arntfield, S. D., Nadon, C. A., & Bernatsky, A. (1996). Phenolic protein interactions in relation to the gelation properties of canola protein. Food Research International, 29(7), 653-659. doi:10.1016/s0963-9969(97)89643-3 es_ES
dc.description.references Shan, B., Cai, Y.-Z., Brooks, J. D., & Corke, H. (2007). The in vitro antibacterial activity of dietary spice and medicinal herb extracts. International Journal of Food Microbiology, 117(1), 112-119. doi:10.1016/j.ijfoodmicro.2007.03.003 es_ES
dc.description.references Shi, X. Q., Chiralt, A., Fito, P., Serra, J., Escoin, C., & Casque, L. (1996). Application of Osmotic Dehydration Technology on Jam Processing. Drying Technology, 14(3-4), 841-857. doi:10.1080/07373939608917127 es_ES
dc.description.references SKOCIBUSIC, M., BEZIC, N., & DUNKIC, V. (2006). Phytochemical composition and antimicrobial activities of the essential oils from Vis. growing in Croatia. Food Chemistry, 96(1), 20-28. doi:10.1016/j.foodchem.2005.01.051 es_ES
dc.description.references Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199-1218. doi:10.1016/j.foodcont.2010.02.003 es_ES
dc.description.references Tepe, B., Akpulat, H. A., Sokmen, M., Daferera, D., Yumrutas, O., Aydin, E., … Sokmen, A. (2006). Screening of the antioxidative and antimicrobial properties of the essential oils of Pimpinella anisetum and Pimpinella flabellifolia from Turkey. Food Chemistry, 97(4), 719-724. doi:10.1016/j.foodchem.2005.05.045 es_ES
dc.description.references Torreggiani, D., Forni, E., Guercilena, I., Maestrelli, A., Bertolo, G., Archer, G. P., … Champion, D. (1999). Modification of glass transition temperature through carbohydrates additions: effect upon colour and anthocyanin pigment stability in frozen strawberry juices. Food Research International, 32(6), 441-446. doi:10.1016/s0963-9969(99)00106-4 es_ES
dc.description.references Vekiari, S. A., Protopapadakis, E. E., Papadopoulou, P., Papanicolaou, D., Panou, C., & Vamvakias, M. (2002). Composition and Seasonal Variation of the Essential Oil from Leaves and Peel of a Cretan Lemon Variety. Journal of Agricultural and Food Chemistry, 50(1), 147-153. doi:10.1021/jf001369a es_ES
dc.description.references Veldhuizen, E. J. A., Tjeerdsma-van Bokhoven, J. L. M., Zweijtzer, C., Burt, S. A., & Haagsman, H. P. (2006). Structural Requirements for the Antimicrobial Activity of Carvacrol. Journal of Agricultural and Food Chemistry, 54(5), 1874-1879. doi:10.1021/jf052564y es_ES
dc.description.references Veriotti, T., & Sacks, R. (2001). High-Speed GC and GC/Time-of-Flight MS of Lemon and Lime Oil Samples. Analytical Chemistry, 73(18), 4395-4402. doi:10.1021/ac010239d es_ES
dc.description.references Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., & Pérez-Álvarez, J. (2008). Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control, 19(12), 1130-1138. doi:10.1016/j.foodcont.2007.12.003 es_ES
dc.description.references Voravuthikunchai, S., Lortheeranuwat, A., Jeeju, W., Sririrak, T., Phongpaichit, S., & Supawita, T. (2004). Effective medicinal plants against enterohaemorrhagic Escherichia coli O157:H7. Journal of Ethnopharmacology, 94(1), 49-54. doi:10.1016/j.jep.2004.03.036 es_ES
dc.description.references Voravuthikunchai, S. P., & Kitpipit, L. (2005). Activity of medicinal plant extracts against hospital isolates of methicillin-resistant Staphylococcus aureus. Clinical Microbiology and Infection, 11(6), 510-512. doi:10.1111/j.1469-0691.2005.01104.x es_ES
dc.description.references Xu, G., Liu, D., Chen, J., Ye, X., Ma, Y., & Shi, J. (2008). Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry, 106(2), 545-551. doi:10.1016/j.foodchem.2007.06.046 es_ES
dc.description.references Yesil-Celiktas, O., Sevimli, C., Bedir, E., & Vardar-Sukan, F. (2010). Inhibitory Effects of Rosemary Extracts, Carnosic Acid and Rosmarinic Acid on the Growth of Various Human Cancer Cell Lines. Plant Foods for Human Nutrition, 65(2), 158-163. doi:10.1007/s11130-010-0166-4 es_ES
dc.description.references Zafrilla, P., Valero, A., & García-Viguera, C. (1998). Stabilization of strawberry jam colour with natural colourants / Estabilización del color de mermelada de fresa mediante la adición de colorantes naturales. Food Science and Technology International, 4(2), 99-105. doi:10.1177/108201329800400204 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem