- -

An Improved Tolerance Charting Technique Using an Analysis of Setup Capability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Improved Tolerance Charting Technique Using an Analysis of Setup Capability

Mostrar el registro completo del ítem

González Contreras, F. (2012). An Improved Tolerance Charting Technique Using an Analysis of Setup Capability. International Journal of Advanced Manufacturing Technology. 62(9-12):1205-1218. doi:10.1007/s00170-011-3874-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45999

Ficheros en el ítem

Metadatos del ítem

Título: An Improved Tolerance Charting Technique Using an Analysis of Setup Capability
Autor: González Contreras, Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
The tolerance charting method enables the calculation of working tolerances in machining process planning. The method has been used as a basic tool for analysing process plans for many decades. Process capability in ...[+]
Palabras clave: Tolerance charting , Process capability , Setup planning , Locating error , Machining process
Derechos de uso: Cerrado
Fuente:
International Journal of Advanced Manufacturing Technology. (issn: 0268-3768 )
DOI: 10.1007/s00170-011-3874-5
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s00170-011-3874-5
Agradecimientos:
The translation of this paper was funded by Universidad Politecnica de Valencia, Spain.
Tipo: Artículo

References

Xu HM, Yuan MH, Li DB (2009) A novel process planning schema based on process knowledge customization. Int J Adv Manuf Tech 44:161–172

Rui W, Thimm G, Yongsheng M (2010) Review: geometric and dimensional tolerance modeling for sheet metal forming and integration with CAPP. Int J Adv Manuf Tech 51:871–889

Jia HB, Xi FF, Ghasempoor A et al (2009) A tolerance method for industrial image-based inspection. Int J Adv Manuf Tech 43:11–12 [+]
Xu HM, Yuan MH, Li DB (2009) A novel process planning schema based on process knowledge customization. Int J Adv Manuf Tech 44:161–172

Rui W, Thimm G, Yongsheng M (2010) Review: geometric and dimensional tolerance modeling for sheet metal forming and integration with CAPP. Int J Adv Manuf Tech 51:871–889

Jia HB, Xi FF, Ghasempoor A et al (2009) A tolerance method for industrial image-based inspection. Int J Adv Manuf Tech 43:11–12

Martinez S, Cuesta E, Barreiro J et al (2010) Analysis of laser scanning and strategies for dimensional and geometrical control. Int J Adv Manuf Tech 46:621–629

Janakiraman V, Saravanan R (2010) Concurrent optimization of machining process parameters and tolerance allocation. Int J Adv Manuf Tech 51:357–369

Huang MF, Zhong YR (2008) Dimensional and geometrical tolerance balancing in concurrent design. Int J Adv Manuf Tech 35:723–735

Hsieh KL (2006) The study of cost–tolerance model by incorporating process capability index into product lifecycle cost. Int J Adv Manuf Tech 28:638–642

Huang MF, Zhong YR, Xu ZG (2005) Concurrent process tolerance design based on minimum product manufacturing cost and quality loss. Int J Adv Manuf Tech 25:714–722

Motorcu AR, Gullu A (2006) Statistical process control in machining, a case study for machine tool capability and process capability. Mater Design 27:364–372

Hamou S, Cheikh A, Linares JM et al (2004) Machining dispersions based procedures for computer aided process plan simulation. Int J Comput Integ M 17:141–150

Jaballi K, Bellacicco A, Louati J et al (2009) Dimensioning of the intermediate states of the machined phases “DISMP” approach. Int J Adv Manuf Tech 45:907–921

Nejad M, Vignat F, Villeneuve F (2009) Simulation of the geometrical defects of manufacturing. Int J Adv Manuf Tech 45:631–648

Wan XJ, Xiong CH, Wang XF et al (2009) Analysis–synthesis of dimensional deviation of the machining feature for discrete-part manufacturing processes. Int J Mach Tool Manu 49:1214–1233

Guo QJ, Yang JG, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Tech 50:667–675

Zhang YJ, Ge LL (2009) Selecting optimal set of tool sequences for machining of multiple pockets. Int J Adv Manuf Tech 42:233–241

Ong TS, Hinds BK (2003) The application of tool deflection knowledge in process planning to meet geometric tolerances. Int J Mach Tool Manu 43:731–737

Boyle I, Rong YM, Brown DC (2011) A review and analysis of current computer-aided fixture design approaches. Robot Cim-Int Manuf 27:1–12

Bansal S, Nagarajan S, Reddy NV (2008) An integrated fixture planning system for minimum tolerances. Int J Adv Manuf Tech 38:501–513

Chaiprapat S, Rujikietgumjorn S (2008) Modeling of positional variability of a fixtured workpiece due to locating errors. Int J Adv Manuf Tech 36:724–731

Yao S, Han X, Yang Y et al (2007) Computer aided manufacturing planning for mass customization: part 2, automated setup planning. Int J Adv Manuf Tech 32:205–217

Wang Y, Chen X, Gindy N (2007) Surface error decomposition for fixture development. Int J Adv Manuf Tech 31:948–956

Qin GH, Zhang WH, Wan M (2006) A mathematical approach to analysis and optimal design of a fixture locating scheme. Int J Adv Manuf Tech 29:349–359

Raghu A, Melkote SN (2005) Modeling of workpiece location error due to fixture geometric error and fixture-workpiece compliance. J Manuf Sci E-T ASME 127:75–83

Kang Y, Rong Y, Yang JC (2003) Computer-aided fixture design verification. Part 2. Tolerance analysis. Int J Adv Manuf Tech 21:836–841

Huang SH, Liu Q (2003) Rigorous application of tolerance analysis in setup planning. Int J Adv Manuf Tech 21:196–207

Rong Y, Hu W, Kang Y et al (2001) Locating error analysis and tolerance assignment for computer-aided fixture design. Int J Prod res 39:3529–3545

Rong Y (1997) Tolerance and accuracy analysis in computer-aided fixture design. In: Advanced tolerancing techniques. Wiley, New York, pp 381–425

Huang SH, Zhang HC (1996) Tolerance analysis in setup planning for rotational parts. J Manuf Syst 15:340–350

Zhang HC, Mei J, Dudek RA (1991) Cirp Ann-Manuf Techn 40:419–422

Xue JB, Ji P (2005) Tolerance charting for components with both angular and square shoulder features. IIE TRANS 37:815–825

Gao Y, Huang M (2003) Optimal process tolerance balancing based on process capabilities. Int J Adv Manuf Tech 21:501–507

Xue JB, Ji P (2002) Identifying tolerance chains with a surface-chain model in tolerance charting. J Mater Process Tech 123:93–99

Britton GA, Thimm G (2002) A matrix method for calculating working dimensions and offsets for tolerance charting. Int J Adv Manuf Tech 20:448–453

Ji P, Xue JB (2002) Process tolerance control in a 2D angular tolerance chart. Int J Adv Manuf Tech 20:649–654

Pan YR, Tang GR (2001) Computer-aided tolerance charting for products with angular features. Int J Adv Manuf Tech 17:361–370

Xue JB, Ji P (2001) A 2D tolerance chart for machining angular features. Int J Adv Manuf Tech 17:523–530

Khodaygan S, Movahhedy MR, Fomani MS (2010) Tolerance analysis of mechanical assemblies based on modal interval and small degrees of freedom (MI-SDOF) concepts. Int J Adv Manuf Tech 50:1041–1061

Ngoi BKA, Ong JM (1999) A complete tolerance charting system in assembly. Int J Prod Res 37:2477–2498

Dimitrellou SC, Diplaris SC, Sfantsikopoulos MM (2008) Tolerance elements: an alternative approach for cost optimum tolerance transfer. J Eng Design 19:173–184

Contreras FG, Rosado P (2007) An alternative method to tolerance transfer for parts with 2D blueprint. Int J Prod Res 45:5309–5328

Sfantsikopoulos MM, Diplaris SC (1991) Coordinate tolerancing in design and manufacturing. Robot Cim-Int Manuf 8:219–222

Curtis MA (1988) Process planning. Wiley, New York

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem