Mostrar el registro sencillo del ítem
dc.contributor.author | González Contreras, Francisco | es_ES |
dc.date.accessioned | 2015-01-12T13:32:39Z | |
dc.date.available | 2015-01-12T13:32:39Z | |
dc.date.issued | 2012-10 | |
dc.identifier.issn | 0268-3768 | |
dc.identifier.uri | http://hdl.handle.net/10251/45999 | |
dc.description.abstract | The tolerance charting method enables the calculation of working tolerances in machining process planning. The method has been used as a basic tool for analysing process plans for many decades. Process capability in tolerance charting is modelled using the tolerances of the working dimensions. The literature shows that machining process capability can be analysed from the point of view of surface position errors. During setups it is possible to perform decomposition into two surface position tolerances: a datum surface position tolerance and a machining surface position tolerance. This type of analysis has the advantage of producing simplified tolerance chains. This paper provides an adaptation of the tolerance charting technique that uses a capability model based on datum and machining surface position tolerance. The results show an improvement in the working tolerance stackup that reduces the capability required for productive resources. As a result, reductions in manufacturing costs can be achieved. The proposal is valid for manual or computer-assisted techniques. | es_ES |
dc.description.sponsorship | The translation of this paper was funded by Universidad Politecnica de Valencia, Spain. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | International Journal of Advanced Manufacturing Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Tolerance charting | es_ES |
dc.subject | Process capability | es_ES |
dc.subject | Setup planning | es_ES |
dc.subject | Locating error | es_ES |
dc.subject | Machining process | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.title | An Improved Tolerance Charting Technique Using an Analysis of Setup Capability | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00170-011-3874-5 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | González Contreras, F. (2012). An Improved Tolerance Charting Technique Using an Analysis of Setup Capability. International Journal of Advanced Manufacturing Technology. 62(9-12):1205-1218. doi:10.1007/s00170-011-3874-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00170-011-3874-5 | es_ES |
dc.description.upvformatpinicio | 1205 | es_ES |
dc.description.upvformatpfin | 1218 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 62 | es_ES |
dc.description.issue | 9-12 | es_ES |
dc.relation.senia | 234216 | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | Xu HM, Yuan MH, Li DB (2009) A novel process planning schema based on process knowledge customization. Int J Adv Manuf Tech 44:161–172 | es_ES |
dc.description.references | Rui W, Thimm G, Yongsheng M (2010) Review: geometric and dimensional tolerance modeling for sheet metal forming and integration with CAPP. Int J Adv Manuf Tech 51:871–889 | es_ES |
dc.description.references | Jia HB, Xi FF, Ghasempoor A et al (2009) A tolerance method for industrial image-based inspection. Int J Adv Manuf Tech 43:11–12 | es_ES |
dc.description.references | Martinez S, Cuesta E, Barreiro J et al (2010) Analysis of laser scanning and strategies for dimensional and geometrical control. Int J Adv Manuf Tech 46:621–629 | es_ES |
dc.description.references | Janakiraman V, Saravanan R (2010) Concurrent optimization of machining process parameters and tolerance allocation. Int J Adv Manuf Tech 51:357–369 | es_ES |
dc.description.references | Huang MF, Zhong YR (2008) Dimensional and geometrical tolerance balancing in concurrent design. Int J Adv Manuf Tech 35:723–735 | es_ES |
dc.description.references | Hsieh KL (2006) The study of cost–tolerance model by incorporating process capability index into product lifecycle cost. Int J Adv Manuf Tech 28:638–642 | es_ES |
dc.description.references | Huang MF, Zhong YR, Xu ZG (2005) Concurrent process tolerance design based on minimum product manufacturing cost and quality loss. Int J Adv Manuf Tech 25:714–722 | es_ES |
dc.description.references | Motorcu AR, Gullu A (2006) Statistical process control in machining, a case study for machine tool capability and process capability. Mater Design 27:364–372 | es_ES |
dc.description.references | Hamou S, Cheikh A, Linares JM et al (2004) Machining dispersions based procedures for computer aided process plan simulation. Int J Comput Integ M 17:141–150 | es_ES |
dc.description.references | Jaballi K, Bellacicco A, Louati J et al (2009) Dimensioning of the intermediate states of the machined phases “DISMP” approach. Int J Adv Manuf Tech 45:907–921 | es_ES |
dc.description.references | Nejad M, Vignat F, Villeneuve F (2009) Simulation of the geometrical defects of manufacturing. Int J Adv Manuf Tech 45:631–648 | es_ES |
dc.description.references | Wan XJ, Xiong CH, Wang XF et al (2009) Analysis–synthesis of dimensional deviation of the machining feature for discrete-part manufacturing processes. Int J Mach Tool Manu 49:1214–1233 | es_ES |
dc.description.references | Guo QJ, Yang JG, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Tech 50:667–675 | es_ES |
dc.description.references | Zhang YJ, Ge LL (2009) Selecting optimal set of tool sequences for machining of multiple pockets. Int J Adv Manuf Tech 42:233–241 | es_ES |
dc.description.references | Ong TS, Hinds BK (2003) The application of tool deflection knowledge in process planning to meet geometric tolerances. Int J Mach Tool Manu 43:731–737 | es_ES |
dc.description.references | Boyle I, Rong YM, Brown DC (2011) A review and analysis of current computer-aided fixture design approaches. Robot Cim-Int Manuf 27:1–12 | es_ES |
dc.description.references | Bansal S, Nagarajan S, Reddy NV (2008) An integrated fixture planning system for minimum tolerances. Int J Adv Manuf Tech 38:501–513 | es_ES |
dc.description.references | Chaiprapat S, Rujikietgumjorn S (2008) Modeling of positional variability of a fixtured workpiece due to locating errors. Int J Adv Manuf Tech 36:724–731 | es_ES |
dc.description.references | Yao S, Han X, Yang Y et al (2007) Computer aided manufacturing planning for mass customization: part 2, automated setup planning. Int J Adv Manuf Tech 32:205–217 | es_ES |
dc.description.references | Wang Y, Chen X, Gindy N (2007) Surface error decomposition for fixture development. Int J Adv Manuf Tech 31:948–956 | es_ES |
dc.description.references | Qin GH, Zhang WH, Wan M (2006) A mathematical approach to analysis and optimal design of a fixture locating scheme. Int J Adv Manuf Tech 29:349–359 | es_ES |
dc.description.references | Raghu A, Melkote SN (2005) Modeling of workpiece location error due to fixture geometric error and fixture-workpiece compliance. J Manuf Sci E-T ASME 127:75–83 | es_ES |
dc.description.references | Kang Y, Rong Y, Yang JC (2003) Computer-aided fixture design verification. Part 2. Tolerance analysis. Int J Adv Manuf Tech 21:836–841 | es_ES |
dc.description.references | Huang SH, Liu Q (2003) Rigorous application of tolerance analysis in setup planning. Int J Adv Manuf Tech 21:196–207 | es_ES |
dc.description.references | Rong Y, Hu W, Kang Y et al (2001) Locating error analysis and tolerance assignment for computer-aided fixture design. Int J Prod res 39:3529–3545 | es_ES |
dc.description.references | Rong Y (1997) Tolerance and accuracy analysis in computer-aided fixture design. In: Advanced tolerancing techniques. Wiley, New York, pp 381–425 | es_ES |
dc.description.references | Huang SH, Zhang HC (1996) Tolerance analysis in setup planning for rotational parts. J Manuf Syst 15:340–350 | es_ES |
dc.description.references | Zhang HC, Mei J, Dudek RA (1991) Cirp Ann-Manuf Techn 40:419–422 | es_ES |
dc.description.references | Xue JB, Ji P (2005) Tolerance charting for components with both angular and square shoulder features. IIE TRANS 37:815–825 | es_ES |
dc.description.references | Gao Y, Huang M (2003) Optimal process tolerance balancing based on process capabilities. Int J Adv Manuf Tech 21:501–507 | es_ES |
dc.description.references | Xue JB, Ji P (2002) Identifying tolerance chains with a surface-chain model in tolerance charting. J Mater Process Tech 123:93–99 | es_ES |
dc.description.references | Britton GA, Thimm G (2002) A matrix method for calculating working dimensions and offsets for tolerance charting. Int J Adv Manuf Tech 20:448–453 | es_ES |
dc.description.references | Ji P, Xue JB (2002) Process tolerance control in a 2D angular tolerance chart. Int J Adv Manuf Tech 20:649–654 | es_ES |
dc.description.references | Pan YR, Tang GR (2001) Computer-aided tolerance charting for products with angular features. Int J Adv Manuf Tech 17:361–370 | es_ES |
dc.description.references | Xue JB, Ji P (2001) A 2D tolerance chart for machining angular features. Int J Adv Manuf Tech 17:523–530 | es_ES |
dc.description.references | Khodaygan S, Movahhedy MR, Fomani MS (2010) Tolerance analysis of mechanical assemblies based on modal interval and small degrees of freedom (MI-SDOF) concepts. Int J Adv Manuf Tech 50:1041–1061 | es_ES |
dc.description.references | Ngoi BKA, Ong JM (1999) A complete tolerance charting system in assembly. Int J Prod Res 37:2477–2498 | es_ES |
dc.description.references | Dimitrellou SC, Diplaris SC, Sfantsikopoulos MM (2008) Tolerance elements: an alternative approach for cost optimum tolerance transfer. J Eng Design 19:173–184 | es_ES |
dc.description.references | Contreras FG, Rosado P (2007) An alternative method to tolerance transfer for parts with 2D blueprint. Int J Prod Res 45:5309–5328 | es_ES |
dc.description.references | Sfantsikopoulos MM, Diplaris SC (1991) Coordinate tolerancing in design and manufacturing. Robot Cim-Int Manuf 8:219–222 | es_ES |
dc.description.references | Curtis MA (1988) Process planning. Wiley, New York | es_ES |