Mostrar el registro sencillo del ítem
dc.contributor.author | Ferretti, Edgardo | es_ES |
dc.contributor.author | Hernández Fusilier, Donato | es_ES |
dc.contributor.author | Guzmán Cabrera, Rafael | es_ES |
dc.contributor.author | Montes y Gómez, Manuel | es_ES |
dc.contributor.author | Errecalde, Marcelo | es_ES |
dc.contributor.author | Rosso, Paolo | es_ES |
dc.date.accessioned | 2015-01-30T12:02:23Z | |
dc.date.available | 2015-01-30T12:02:23Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1613-0073 | |
dc.identifier.uri | http://hdl.handle.net/10251/46566 | |
dc.description.abstract | [EN] In this article we describe a new approach to assess Quality Flaw Prediction in Wikipedia. The partially supervised method studied, called PU Learning, has been successfully applied in classi cations tasks with traditional corpora like Reuters-21578 or 20-Newsgroups. To the best of our knowledge, this is the rst time that it is applied in this domain. Throughout this paper, we describe how the original PU Learning approach was evaluated for assessing quality flaws and the modi cations introduced to get a quality aws predictor which obtained the best F1 scores in the task \Quality Flaw Prediction in Wikipedia" of the PAN challenge. | es_ES |
dc.description.sponsorship | Edgardo Ferretti and Marcelo Errecalde thank Universidad Nacional de San Luis (PROICO 30310). The collaboration of UNSL, INAOE and UPV has been funded by the European Commission as part of the WIQ-EI project (project no. 269180) within the FP7 People Programme. Manuel Montes is partially supported by CONACYT, No. 134186. The work of Paolo Rosso was carried out also in the framework of the MICINN Text-Enterprise (TIN2009-13391-C04-03) research project and the Microcluster VLC/Campus (International Campus of Excellence) on Multimodal Intelligent Systems. | |
dc.language | Inglés | es_ES |
dc.relation.ispartof | CEUR Workshop Proceedings | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | On the Use of PU Learning for Quality Flaw Prediction in Wikipedia | es_ES |
dc.type | Artículo | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/269180/EU/Web Information Quality Evaluation Initiative/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNSL//PROICO 30310/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//134186/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2009-13391-C04-03/ES/Text-Enterprise 2.0: Tecnicas De Comprension De Textos Aplicadas A Las Necesidades De La Empresa 2.0/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Ferretti, E.; Hernández Fusilier, D.; Guzmán Cabrera, R.; Montes Y Gómez, M.; Errecalde, M.; Rosso, P. (2012). On the Use of PU Learning for Quality Flaw Prediction in Wikipedia. CEUR Workshop Proceedings. 1178. http://hdl.handle.net/10251/46566 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://ceur-ws.org/Vol-1178/ | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 1178 | es_ES |
dc.relation.senia | 232477 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Universidad Nacional de San Luis, Argentina | |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | |
dc.contributor.funder | Ministerio de Ciencia e Innovación |