Mostrar el registro sencillo del ítem
dc.contributor.author | Lobera González, Maria Pilar | es_ES |
dc.contributor.author | Valero Cubas, Soledad | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.contributor.author | Escolástico Rozalén, Sonia | es_ES |
dc.contributor.author | Argente Villaplana, Estefanía | es_ES |
dc.contributor.author | Botti, V. | es_ES |
dc.date.accessioned | 2015-02-02T09:24:24Z | |
dc.date.available | 2015-02-02T09:24:24Z | |
dc.date.issued | 2011-12-15 | |
dc.identifier.issn | 0009-2509 | |
dc.identifier.uri | http://hdl.handle.net/10251/46631 | |
dc.description.abstract | [EN] This work presents the optimization of the operating conditions of a membrane reactor for the oxidative dehydrogenation of ethane. The catalytic membrane reactor is based on a mixed ionic-electronic conducting material, i.e. Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(delta-3), which presents high oxygen flux above 750 degrees C under sufficient chemical potential gradient. Specifically, diluted ethane is fed into the reactor chamber and air (or diluted air) is flushed to the other side of the membrane. A framework based on Soft Computing techniques has been used to maximize the ethylene yield by simultaneously varying five operation variables: nominal reactor temperature (Temp); gas flow in the reaction compartment (QHC); gas flow in the oxygen-rich compartment (QAir); ethane concentration in the reaction compartment (%C(2)H(6)); and oxygen concentration in oxygen-rich compartment (%O(2)). The optimization tool combines a genetic algorithm guided by a neural network model. This shows how the neural network model for this particular problem is obtained and the analysis of its behavior along the optimization process. The optimization process is analyzed in terms of: (1) catalytic figures of merit, i.e., evolution of yield and selectivity towards different products and (2) framework behavior and variable significance. The two experimental areas maximizing the ethylene yield are explored and analyzed. The highest yield reached in the optimization process exceeded 87%. (C) 2010 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | Financial support from the Spanish Ministry for Science and Innovation (Project ENE2008-06302 and FPI Grant JAE-Pre 08-0058, CONSOLIDER-INGENIO 2010 under grant CSD2007-00022, TIN2008-04446/TIN project and TIN2009-13839-C03-01 project, which are co-funded by the Spanish government and FEDER funds), EU through FP7 NASA-OTM Project (NMP3-SL-2009-228701), and the Helmholtz Association of German Research Centers through the Helmholtz Alliance MEM-BRAIN (Initiative and Networking Fund) is kindly acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chemical Engineering Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Soft computing | es_ES |
dc.subject | Neural network | es_ES |
dc.subject | Genetic algorithm | es_ES |
dc.subject | Membrane reactor | es_ES |
dc.subject | ODHE | es_ES |
dc.subject | Optimization | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Optimization of ODHE membrane reactor based on mixed ionic electronicconductor using soft computing techniques | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ces.2010.12.013 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/228701/EU/NAnostructured Surface Activated ultra-thin Oxygen Transport Membrane/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//ENE2008-06302/ES/BUSQUEDA DE NUEVOS MATERIALES CONDUCTORES DE OXIGENO E HIDROGENO EN ESTADO SOLIDO MEDIANTE QUIMICA COMBINATORIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CSIC//JAE-Pre 08-0058/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00022/ES/Agreement Technologies/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2008-04446/ES/UNA PLATAFORMA PARA SISTEMAS MULTIAGENTE ABIERTOS/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2009-13839-C03-01/ES/Organizaciones Virtuales Adaptativas: Arquitecturas Y Metodos De Desarrollo/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Lobera González, MP.; Valero Cubas, S.; Serra Alfaro, JM.; Escolástico Rozalén, S.; Argente Villaplana, E.; Botti, V. (2011). Optimization of ODHE membrane reactor based on mixed ionic electronicconductor using soft computing techniques. Chemical Engineering Science. 66(24):6308-6317. https://doi.org/10.1016/j.ces.2010.12.013 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.ces.2010.12.013 | es_ES |
dc.description.upvformatpinicio | 6308 | es_ES |
dc.description.upvformatpfin | 6317 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 66 | es_ES |
dc.description.issue | 24 | es_ES |
dc.relation.senia | 202857 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Helmholtz Association of German Research Centers | |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |