Mostrar el registro sencillo del ítem
dc.contributor.author | García Herrero, Francisco Miguel | es_ES |
dc.contributor.author | Valls Coquillat, Javier | es_ES |
dc.contributor.author | Meher, P. K. | es_ES |
dc.date.accessioned | 2015-02-09T09:20:22Z | |
dc.date.available | 2015-02-09T09:20:22Z | |
dc.date.issued | 2011-12 | |
dc.identifier.issn | 0278-081X | |
dc.identifier.uri | http://hdl.handle.net/10251/46831 | |
dc.description.abstract | Algebraic Soft-Decision Decoding (ASD) of Reed-Solomon (RS) codes provides higher coding gain over the conventional hard-decision decoding (HDD), but involves high computational complexity. Among the existing ASD methods, the Low Complexity Chase (LCC) decoding is the one with the lowest implementation cost. LCC decoding is based on generating 2 ¿ test vectors, where ¿ symbols are selected as the least reliable symbols for which hard-decision or the second more reliable decision are employed. Previous decoding algorithms for LCC decoders are based on interpolation and re-encoding techniques. On the other hand, HDD algorithms such as the Berlekamp-Massey (BM) algorithm or the Euclidean algorithm, despite of their low computational complexity, are not considered suitable for LCC decoding. In this paper, we present a new approach to LCC decoding based on one of these HDD algorithms, the inversion-less Berlekamp-Massey (iBM) algorithm, where the test vectors are selected for correction during decoding on occurrence of hard-decision decoding failure. The proposed architecture when applied to a RS(255, 239) code with ¿=3, saves a 20.5% and 2% of area compared to the LCC with factorization and a factorization-free decoder, respectively. In both cases, the latency is reduced by 34.5%, which is an increase of throughput rate in the same percentage since the critical path is the same in all the competing architectures. So an efficiency of at least 56% in terms of area-delay product can be obtained, compared with previous works. A complete RS(255, 239) LCC decoder with ¿=3 has been coded in VHDL and synthesized for implementation in Vitex-5 FPGA device, and by using SAED 90 nm standard cell library as well, and find a decoding rate of 710 Mbps and 4.2 Gbps and area of 2527 slices and 0.36 mm 2, respectively. © 2011 Springer Science+Business Media, LLC. | es_ES |
dc.description.sponsorship | This research was supported by FEDER and the Spanish Ministerio de Ciencia e Innovacion, under Grant No. TEC2008-06787. | en_EN |
dc.language | Español | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Circuits, Systems, and Signal Processing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | ASIC implementation | es_ES |
dc.subject | FPGA implementation | es_ES |
dc.subject | Low complexity chase decoder | es_ES |
dc.subject | Reed-Solomon | es_ES |
dc.subject | Soft-decision | es_ES |
dc.subject | Algebraic soft-decision decoding | es_ES |
dc.subject | Coding gains | es_ES |
dc.subject | Critical Paths | es_ES |
dc.subject | Decoding algorithm | es_ES |
dc.subject | Decoding failure | es_ES |
dc.subject | Decoding rates | es_ES |
dc.subject | Euclidean algorithms | es_ES |
dc.subject | FPGA devices | es_ES |
dc.subject | High-speed | es_ES |
dc.subject | Implementation cost | es_ES |
dc.subject | Low complexity | es_ES |
dc.subject | Proposed architectures | es_ES |
dc.subject | Re-encoding | es_ES |
dc.subject | Reed solomon | es_ES |
dc.subject | Reliable decision | es_ES |
dc.subject | Standard cell | es_ES |
dc.subject | Test vectors | es_ES |
dc.subject | Throughput rate | es_ES |
dc.subject | Algorithms | es_ES |
dc.subject | Computational complexity | es_ES |
dc.subject | Electric batteries | es_ES |
dc.subject | Factorization | es_ES |
dc.subject | Decoding | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | High speed RS(255, 239) decoder based on LCC decoding | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00034-011-9327-4 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2008-06787/ES/ARQUITECTURAS DE FEC PARA SISTEMAS DE COMUNICACIONES DE MUY ALTA VELOCIDAD/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | García Herrero, FM.; Valls Coquillat, J.; Meher, PK. (2011). High speed RS(255, 239) decoder based on LCC decoding. Circuits, Systems, and Signal Processing. 30(6):1643-1669. https://doi.org/10.1007/s00034-011-9327-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00034-011-9327-4 | es_ES |
dc.description.upvformatpinicio | 1643 | es_ES |
dc.description.upvformatpfin | 1669 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 210720 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | J. Bellorado, Low-complexity soft decoding algorithms for Reed–Solomon codes. Ph.D. thesis, Harvard University, 2006 | es_ES |
dc.description.references | D. Chase, A class of algorithms for decoding block codes with channel measurement information. IEEE Trans. Inf. Theory IT-18, 170–182 (1972) | es_ES |
dc.description.references | R.E. Blahut, Theory and Practice of Error-Control Codes (Addison-Wesley, Reading, 1983) | es_ES |
dc.description.references | R.E. Blahut, Algebraic Codes on Lines, Planes, and Curves, An Engineering Approach (University of Illinois, Urbana-Champaign, 2008) | es_ES |
dc.description.references | L. Hanzo, T.H. Liew, B.L. Yeap, Turbo Coding Equalisation and Space-Time Coding (University of Southampton, UK, 2002) | es_ES |
dc.description.references | W.J. Gross, F.R. Kschischang, P. Gulak, Architecture and implementation of an interpolation processor for soft-decision Reed–Solomon decoding. IEEE Trans. Very Large Scale Integr. 15(3), 309–318 (2007) | es_ES |
dc.description.references | W.J. Gross, F.R. Kschischang, R. Koetter, P. Glenn Gulak, A VLSI architecture for interpolation-based in soft-decision list decoding of Reed–Solomon decoders. J. VLSI Signal Process. 39(1–2), 93–111 (2005) | es_ES |
dc.description.references | J. Jiang, K. Narayanan, Algebraic soft-decision decoding of Reed- Solomon codes using bit-level soft information. IEEE Trans. Inf. Theory 54(9), 3907–3928 (2008) | es_ES |
dc.description.references | T.K. Moon, Error Correction Coding: Mathematical Methods And Algorithms (Wiley, New Jersey, 2004) | es_ES |
dc.description.references | K. Lee, M. O’Sullivan, An interpolation algorithm using Grobner bases for soft-decision decoding of Reed–Solomon codes, in Proc. of IEEE International Symposium on Information Theory, pp. 2032–2036, Seattle, Washington, Jul. 2006 (2006) | es_ES |
dc.description.references | H. Lee, A high-speed low-complexity Reed–Solomon decoder for optical communications. IEEE Trans. Circuits Syst. II 52(8), 461–465 (2005) | es_ES |
dc.description.references | H. Lee, High-speed VLSI architecture for parallel Reed–Solomon decoder. IEEE Trans. Very Large Scale Integr. 11(2), 288–294 (2003) | es_ES |
dc.description.references | S.L. Shieh, S.G. Lee, W.H. Sheen, A low-latency decoder for punctured/shortened Reed–Solomon codes, in IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (2005) | es_ES |
dc.description.references | R. Nielsen, Decoding AG-codes beyond half the minimum distance, Ph.D. dissertation, Tech. Univ. Denmark, Copenhagen, 1998 | es_ES |
dc.description.references | R. Roth, G. Ruckenstein, Efficient decoding of Reed–Solomon codes beyond half the minimum distance. IEEE Trans. Inf. Theory 46, 246–257 (2000) | es_ES |
dc.description.references | Seth Kavish, K.N. Viswajith, S. Srinivasan, V. Kamakoti, Ultra Folded High-Speed Architectures for Reed–Solomon Decoders, in 19th International Conference on VLSI Design held jointly with 5th International Conference on Embedded Systems Design (VLSID’06), pp. 517–520 (2006) | es_ES |
dc.description.references | B. Sklar, Digital Communications: Fundamentals and Applications (Prentice Hall, New York, 2001) | es_ES |
dc.description.references | I.S. Reed, M.T. Shih, T.K. Truong, VLSI design of inverse-free Berlekamp–Massey algorithm. Proc. Inst. Electr. Eng. 138, 295–298 (1991) | es_ES |
dc.description.references | Dilip V. Sarwate, Naresh R. Shanbhag, High-speed architectures for Reed–Solomon decoders. IEEE Trans. Very Large Scale Integr. 9(5), 641–655 (2001) | es_ES |
dc.description.references | B. Yuan, Z. Wang, L. Li, M. Gao, J. Sha, C. Zhang, Area-efficient Reed–Solomon decoder design for optical communications. IEEE Trans. Circuits Syst. II 56(6), 469–473 (2009) | es_ES |
dc.description.references | X. Zhang, J. Zhu, High-throughput interpolation architecture for algebraic soft-decision Reed–Solomon decoding. IEEE Trans. Circuits Syst. I 57(3), 581–591 (2010) | es_ES |
dc.description.references | X. Zhang, J. Zhu, Hardware complexities of algebraic soft-decision Reed–Solomon decoders and comparisons, Information Theory and Applications, 2010 | es_ES |
dc.description.references | X. Zhang, High-speed VLSI architecture for low-complexity chase soft-decision Reed–Solomon decoding, in Proc. Information Theory and Applications Workshop, San Diego, CA, Feb. 2009 (2009) | es_ES |
dc.description.references | J. Zhu, X. Zhang, Efficient VLSI architecture for soft-decision decoding of Reed–Solomon codes. IEEE Trans. Circuits Syst. I, Regul. Pap. 55(10), 3050–3062 (2008) | es_ES |
dc.description.references | J. Zhu, X. Zhang, Z. Wang, Backward interpolation architecture for algebraic soft-decision Reed–Solomon decoding. IEEE Trans. Very Large Scale Integr. 17(11), 1602–1615 (2009) | es_ES |
dc.description.references | J. Zhu, X. Zhang, Factorization-free low-complexity chase soft-decision decoding of Reed–Solomon codes, in Proc. IEEE International Symposium on Circuits and Systems, pp. 2677–2680, 2009 | es_ES |
dc.description.references | J. Zhu, X. Zhang, Efficient architecture for generalized minimum-distance decoder of Reed–Solomon codes, in Acoustics Speech and Signal Processing (ICASSP), pp. 1502–1505, 2010 | es_ES |