Cerdà-Uguet, M. A., Schellekens, M. P., & Valero, O. (2011). The Baire Partial Quasi-Metric Space: A Mathematical Tool for Asymptotic Complexity Analysis in Computer Science. Theory of Computing Systems, 50(2), 387-399. doi:10.1007/s00224-010-9310-7
Cull, P., & Ecklund, E. F. (1985). Towers of Hanoi and Analysis of Algorithms. The American Mathematical Monthly, 92(6), 407. doi:10.2307/2322448
García-Raffi, L. M., Romaguera, S., & Sánchez-Pérez, E. A. (2002). Sequence spaces and asymmetric norms in the theory of computational complexity. Mathematical and Computer Modelling, 36(1-2), 1-11. doi:10.1016/s0895-7177(02)00100-0
[+]
Cerdà-Uguet, M. A., Schellekens, M. P., & Valero, O. (2011). The Baire Partial Quasi-Metric Space: A Mathematical Tool for Asymptotic Complexity Analysis in Computer Science. Theory of Computing Systems, 50(2), 387-399. doi:10.1007/s00224-010-9310-7
Cull, P., & Ecklund, E. F. (1985). Towers of Hanoi and Analysis of Algorithms. The American Mathematical Monthly, 92(6), 407. doi:10.2307/2322448
García-Raffi, L. M., Romaguera, S., & Sánchez-Pérez, E. A. (2002). Sequence spaces and asymmetric norms in the theory of computational complexity. Mathematical and Computer Modelling, 36(1-2), 1-11. doi:10.1016/s0895-7177(02)00100-0
García-Raffi, L. M., Romaguera, S., & Schellekens, M. P. (2008). Applications of the complexity space to the General Probabilistic Divide and Conquer Algorithms. Journal of Mathematical Analysis and Applications, 348(1), 346-355. doi:10.1016/j.jmaa.2008.07.026
Künzi, H.-P. A. (2001). Nonsymmetric Distances and Their Associated Topologies: About the Origins of Basic Ideas in the Area of Asymmetric Topology. History of Topology, 853-968. doi:10.1007/978-94-017-0470-0_3
Rodríguez-López, J., Romaguera, S., & Valero, O. (2008). Denotational semantics for programming languages, balanced quasi-metrics and fixed points. International Journal of Computer Mathematics, 85(3-4), 623-630. doi:10.1080/00207160701210653
Rodríguez-López, J., Schellekens, M. P., & Valero, O. (2009). An extension of the dual complexity space and an application to Computer Science. Topology and its Applications, 156(18), 3052-3061. doi:10.1016/j.topol.2009.02.009
Romaguera, S., & Schellekens, M. (1999). Quasi-metric properties of complexity spaces. Topology and its Applications, 98(1-3), 311-322. doi:10.1016/s0166-8641(98)00102-3
Romaguera, S., & Valero, O. (2008). On the structure of the space of complexity partial functions. International Journal of Computer Mathematics, 85(3-4), 631-640. doi:10.1080/00207160701210117
Romaguera, S., Schellekens, M. P., & Valero, O. (2011). The complexity space of partial functions: a connection between complexity analysis and denotational semantics. International Journal of Computer Mathematics, 88(9), 1819-1829. doi:10.1080/00207161003631885
Schellekens, M. (1995). The Smyth Completion. Electronic Notes in Theoretical Computer Science, 1, 535-556. doi:10.1016/s1571-0661(04)00029-5
Scott, D. S. 1970. Outline of a mathematical theory of computation. Proceedings of the 4th Annual Princeton Conference on Information Sciences and Systems. March26–271970, Princeton, NJ. pp.169–176.
[-]