- -

New results on the mathematical foundations of asymptotic complexity analysis of algorithms via complexity spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New results on the mathematical foundations of asymptotic complexity analysis of algorithms via complexity spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romaguera Bonilla, Salvador es_ES
dc.contributor.author Tirado Peláez, Pedro es_ES
dc.contributor.author Valero Sierra, Óscar es_ES
dc.date.accessioned 2015-02-09T10:57:56Z
dc.date.available 2015-02-09T10:57:56Z
dc.date.issued 2012
dc.identifier.issn 0020-7160
dc.identifier.uri http://hdl.handle.net/10251/46842
dc.description.abstract Schellekens [The Smyth completion: A common foundation for denotational semantics and complexity analysis, Electron. Notes Theor. Comput. Sci. 1 (1995), pp. 211-232.] introduced the theory of complexity (quasi-metric) spaces as a part of the development of a topological foundation for the asymptotic complexity analysis of programs and algorithms in 1995. The applicability of this theory to the asymptotic complexity analysis of divide and conquer algorithms was also illustrated by Schellekens in the same paper. In particular, he gave a new formal proof, based on the use of the Banach fixed-point theorem, of the well-known fact that the asymptotic upper bound of the average running time of computing of Mergesort belongs to the asymptotic complexity class of n log(2) n. Recently, Schellekens' method has been shown to be useful in yielding asymptotic upper bounds for a class of algorithms whose running time of computing leads to recurrence equations different from the divide and conquer ones reported in Cerda-Uguet et al. [The Baire partial quasi-metric space: A mathematical tool for the asymptotic complexity analysis in Computer Science, Theory Comput. Syst. 50 (2012), pp. 387-399.]. However, the variety of algorithms whose complexity can be analysed with this approach is not much larger than that of algorithms that can be analysed with the original Schellekens method. In this paper, on the one hand, we extend Schellekens' method in order to yield asymptotic upper bounds for a certain class of recursive algorithms whose running time of computing cannot be discussed following the techniques given by Cerda-Uguet et al. and, on the other hand, we improve the original Schellekens method by introducing a new fixed-point technique for providing, contrary to the case of the method introduced by Cerda-Uguet et al., lower asymptotic bounds of the running time of computing of the aforementioned algorithms and those studied by Cerda-Uguet et al. We illustrate and validate the developed method by applying our results to provide the asymptotic complexity class (asymptotic upper and lower bounds) of the celebrated algorithms Quicksort, Largetwo and Hanoi. es_ES
dc.description.sponsorship The authors are thankful for the support from the Spanish Ministry of Science and Innovation, grant MTM2009-12872-C02-01. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis Ltd es_ES
dc.relation.ispartof International Journal of Computer Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Quasi-metric es_ES
dc.subject Complexity space es_ES
dc.subject Fixed Point es_ES
dc.subject Improver es_ES
dc.subject Worsener es_ES
dc.subject Complexity class es_ES
dc.subject Quicksort es_ES
dc.subject Hanoi es_ES
dc.subject Largetwo es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title New results on the mathematical foundations of asymptotic complexity analysis of algorithms via complexity spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00207160.2012.659246
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2009-12872-C02-01/ES/Construccion De Casi-Metricas Fuzzy, De Distancias De Complejidad Y De Dominios Cuantitativos. Aplicaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Romaguera Bonilla, S.; Tirado Peláez, P.; Valero Sierra, Ó. (2012). New results on the mathematical foundations of asymptotic complexity analysis of algorithms via complexity spaces. International Journal of Computer Mathematics. 89(13-14):1728-1741. https://doi.org/10.1080/00207160.2012.659246 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/00207160.2012.659246 es_ES
dc.description.upvformatpinicio 1728 es_ES
dc.description.upvformatpfin 1741 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 89 es_ES
dc.description.issue 13-14 es_ES
dc.relation.senia 230126
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Cerdà-Uguet, M. A., Schellekens, M. P., & Valero, O. (2011). The Baire Partial Quasi-Metric Space: A Mathematical Tool for Asymptotic Complexity Analysis in Computer Science. Theory of Computing Systems, 50(2), 387-399. doi:10.1007/s00224-010-9310-7 es_ES
dc.description.references Cull, P., & Ecklund, E. F. (1985). Towers of Hanoi and Analysis of Algorithms. The American Mathematical Monthly, 92(6), 407. doi:10.2307/2322448 es_ES
dc.description.references García-Raffi, L. M., Romaguera, S., & Sánchez-Pérez, E. A. (2002). Sequence spaces and asymmetric norms in the theory of computational complexity. Mathematical and Computer Modelling, 36(1-2), 1-11. doi:10.1016/s0895-7177(02)00100-0 es_ES
dc.description.references García-Raffi, L. M., Romaguera, S., & Schellekens, M. P. (2008). Applications of the complexity space to the General Probabilistic Divide and Conquer Algorithms. Journal of Mathematical Analysis and Applications, 348(1), 346-355. doi:10.1016/j.jmaa.2008.07.026 es_ES
dc.description.references Künzi, H.-P. A. (2001). Nonsymmetric Distances and Their Associated Topologies: About the Origins of Basic Ideas in the Area of Asymmetric Topology. History of Topology, 853-968. doi:10.1007/978-94-017-0470-0_3 es_ES
dc.description.references Rodríguez-López, J., Romaguera, S., & Valero, O. (2008). Denotational semantics for programming languages, balanced quasi-metrics and fixed points. International Journal of Computer Mathematics, 85(3-4), 623-630. doi:10.1080/00207160701210653 es_ES
dc.description.references Rodríguez-López, J., Schellekens, M. P., & Valero, O. (2009). An extension of the dual complexity space and an application to Computer Science. Topology and its Applications, 156(18), 3052-3061. doi:10.1016/j.topol.2009.02.009 es_ES
dc.description.references Romaguera, S., & Schellekens, M. (1999). Quasi-metric properties of complexity spaces. Topology and its Applications, 98(1-3), 311-322. doi:10.1016/s0166-8641(98)00102-3 es_ES
dc.description.references Romaguera, S., & Valero, O. (2008). On the structure of the space of complexity partial functions. International Journal of Computer Mathematics, 85(3-4), 631-640. doi:10.1080/00207160701210117 es_ES
dc.description.references Romaguera, S., Schellekens, M. P., & Valero, O. (2011). The complexity space of partial functions: a connection between complexity analysis and denotational semantics. International Journal of Computer Mathematics, 88(9), 1819-1829. doi:10.1080/00207161003631885 es_ES
dc.description.references Schellekens, M. (1995). The Smyth Completion. Electronic Notes in Theoretical Computer Science, 1, 535-556. doi:10.1016/s1571-0661(04)00029-5 es_ES
dc.description.references Scott, D. S. 1970. Outline of a mathematical theory of computation. Proceedings of the 4th Annual Princeton Conference on Information Sciences and Systems. March26–271970, Princeton, NJ. pp.169–176. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem