Mostrar el registro sencillo del ítem
dc.contributor.author | Romaguera Bonilla, Salvador | es_ES |
dc.contributor.author | Tirado Peláez, Pedro | es_ES |
dc.contributor.author | Valero Sierra, Óscar | es_ES |
dc.date.accessioned | 2015-02-09T10:57:56Z | |
dc.date.available | 2015-02-09T10:57:56Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0020-7160 | |
dc.identifier.uri | http://hdl.handle.net/10251/46842 | |
dc.description.abstract | Schellekens [The Smyth completion: A common foundation for denotational semantics and complexity analysis, Electron. Notes Theor. Comput. Sci. 1 (1995), pp. 211-232.] introduced the theory of complexity (quasi-metric) spaces as a part of the development of a topological foundation for the asymptotic complexity analysis of programs and algorithms in 1995. The applicability of this theory to the asymptotic complexity analysis of divide and conquer algorithms was also illustrated by Schellekens in the same paper. In particular, he gave a new formal proof, based on the use of the Banach fixed-point theorem, of the well-known fact that the asymptotic upper bound of the average running time of computing of Mergesort belongs to the asymptotic complexity class of n log(2) n. Recently, Schellekens' method has been shown to be useful in yielding asymptotic upper bounds for a class of algorithms whose running time of computing leads to recurrence equations different from the divide and conquer ones reported in Cerda-Uguet et al. [The Baire partial quasi-metric space: A mathematical tool for the asymptotic complexity analysis in Computer Science, Theory Comput. Syst. 50 (2012), pp. 387-399.]. However, the variety of algorithms whose complexity can be analysed with this approach is not much larger than that of algorithms that can be analysed with the original Schellekens method. In this paper, on the one hand, we extend Schellekens' method in order to yield asymptotic upper bounds for a certain class of recursive algorithms whose running time of computing cannot be discussed following the techniques given by Cerda-Uguet et al. and, on the other hand, we improve the original Schellekens method by introducing a new fixed-point technique for providing, contrary to the case of the method introduced by Cerda-Uguet et al., lower asymptotic bounds of the running time of computing of the aforementioned algorithms and those studied by Cerda-Uguet et al. We illustrate and validate the developed method by applying our results to provide the asymptotic complexity class (asymptotic upper and lower bounds) of the celebrated algorithms Quicksort, Largetwo and Hanoi. | es_ES |
dc.description.sponsorship | The authors are thankful for the support from the Spanish Ministry of Science and Innovation, grant MTM2009-12872-C02-01. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis Ltd | es_ES |
dc.relation.ispartof | International Journal of Computer Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Quasi-metric | es_ES |
dc.subject | Complexity space | es_ES |
dc.subject | Fixed Point | es_ES |
dc.subject | Improver | es_ES |
dc.subject | Worsener | es_ES |
dc.subject | Complexity class | es_ES |
dc.subject | Quicksort | es_ES |
dc.subject | Hanoi | es_ES |
dc.subject | Largetwo | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | New results on the mathematical foundations of asymptotic complexity analysis of algorithms via complexity spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207160.2012.659246 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2009-12872-C02-01/ES/Construccion De Casi-Metricas Fuzzy, De Distancias De Complejidad Y De Dominios Cuantitativos. Aplicaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Romaguera Bonilla, S.; Tirado Peláez, P.; Valero Sierra, Ó. (2012). New results on the mathematical foundations of asymptotic complexity analysis of algorithms via complexity spaces. International Journal of Computer Mathematics. 89(13-14):1728-1741. https://doi.org/10.1080/00207160.2012.659246 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/00207160.2012.659246 | es_ES |
dc.description.upvformatpinicio | 1728 | es_ES |
dc.description.upvformatpfin | 1741 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 89 | es_ES |
dc.description.issue | 13-14 | es_ES |
dc.relation.senia | 230126 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Cerdà-Uguet, M. A., Schellekens, M. P., & Valero, O. (2011). The Baire Partial Quasi-Metric Space: A Mathematical Tool for Asymptotic Complexity Analysis in Computer Science. Theory of Computing Systems, 50(2), 387-399. doi:10.1007/s00224-010-9310-7 | es_ES |
dc.description.references | Cull, P., & Ecklund, E. F. (1985). Towers of Hanoi and Analysis of Algorithms. The American Mathematical Monthly, 92(6), 407. doi:10.2307/2322448 | es_ES |
dc.description.references | García-Raffi, L. M., Romaguera, S., & Sánchez-Pérez, E. A. (2002). Sequence spaces and asymmetric norms in the theory of computational complexity. Mathematical and Computer Modelling, 36(1-2), 1-11. doi:10.1016/s0895-7177(02)00100-0 | es_ES |
dc.description.references | García-Raffi, L. M., Romaguera, S., & Schellekens, M. P. (2008). Applications of the complexity space to the General Probabilistic Divide and Conquer Algorithms. Journal of Mathematical Analysis and Applications, 348(1), 346-355. doi:10.1016/j.jmaa.2008.07.026 | es_ES |
dc.description.references | Künzi, H.-P. A. (2001). Nonsymmetric Distances and Their Associated Topologies: About the Origins of Basic Ideas in the Area of Asymmetric Topology. History of Topology, 853-968. doi:10.1007/978-94-017-0470-0_3 | es_ES |
dc.description.references | Rodríguez-López, J., Romaguera, S., & Valero, O. (2008). Denotational semantics for programming languages, balanced quasi-metrics and fixed points. International Journal of Computer Mathematics, 85(3-4), 623-630. doi:10.1080/00207160701210653 | es_ES |
dc.description.references | Rodríguez-López, J., Schellekens, M. P., & Valero, O. (2009). An extension of the dual complexity space and an application to Computer Science. Topology and its Applications, 156(18), 3052-3061. doi:10.1016/j.topol.2009.02.009 | es_ES |
dc.description.references | Romaguera, S., & Schellekens, M. (1999). Quasi-metric properties of complexity spaces. Topology and its Applications, 98(1-3), 311-322. doi:10.1016/s0166-8641(98)00102-3 | es_ES |
dc.description.references | Romaguera, S., & Valero, O. (2008). On the structure of the space of complexity partial functions. International Journal of Computer Mathematics, 85(3-4), 631-640. doi:10.1080/00207160701210117 | es_ES |
dc.description.references | Romaguera, S., Schellekens, M. P., & Valero, O. (2011). The complexity space of partial functions: a connection between complexity analysis and denotational semantics. International Journal of Computer Mathematics, 88(9), 1819-1829. doi:10.1080/00207161003631885 | es_ES |
dc.description.references | Schellekens, M. (1995). The Smyth Completion. Electronic Notes in Theoretical Computer Science, 1, 535-556. doi:10.1016/s1571-0661(04)00029-5 | es_ES |
dc.description.references | Scott, D. S. 1970. Outline of a mathematical theory of computation. Proceedings of the 4th Annual Princeton Conference on Information Sciences and Systems. March26–271970, Princeton, NJ. pp.169–176. | es_ES |