Mostrar el registro sencillo del ítem
dc.contributor.author | Li ., Liangping | es_ES |
dc.contributor.author | Zhou ., Haiyan | es_ES |
dc.contributor.author | Franssen, HJH | es_ES |
dc.contributor.author | Gómez-Hernández, J. Jaime | es_ES |
dc.date.accessioned | 2015-02-12T12:48:05Z | |
dc.date.available | 2015-02-12T12:48:05Z | |
dc.date.issued | 2012-01 | |
dc.identifier.issn | 0043-1397 | |
dc.identifier.uri | http://hdl.handle.net/10251/46951 | |
dc.description.abstract | The ensemble Kalman filter (EnKF) is coupled with upscaling to build an aquifer model at a coarser scale than the scale at which the conditioning data (conductivity and piezometric head) had been taken for the purpose of inverse modeling. Building an aquifer model at the support scale of observations is most often impractical since this would imply numerical models with many millions of cells. If, in addition, an uncertainty analysis is required involving some kind of Monte Carlo approach, the task becomes impossible. For this reason, a methodology has been developed that will use the conductivity data at the scale at which they were collected to build a model at a (much) coarser scale suitable for the inverse modeling of groundwater flow and mass transport. It proceeds as follows: (1) Generate an ensemble of realizations of conductivities conditioned to the conductivity data at the same scale at which conductivities were collected. (2) Upscale each realization onto a coarse discretization; on these coarse realizations, conductivities will become tensorial in nature with arbitrary orientations of their principal components. (3) Apply the EnKF to the ensemble of coarse conductivity upscaled realizations in order to condition the realizations to the measured piezometric head data. The proposed approach addresses the problem of how to deal with tensorial parameters, at a coarse scale, in ensemble Kalman filtering while maintaining the conditioning to the fine-scale hydraulic conductivity measurements. We demonstrate our approach in the framework of a synthetic worth-of-data exercise, in which the relevance of conditioning to conductivities, piezometric heads, or both is analyzed. | es_ES |
dc.description.sponsorship | The authors acknowledge Wolfgang Nowak and three anonymous reviewers for their comments on the previous versions of the manuscript, which helped substantially to improve it. The authors gratefully acknowledge the financial support by the Spanish Ministry of Science and Innovation through project CGL2011-23295. Extra travel grants awarded to the first and second authors by the Ministry of Education (Spain) are also acknowledged. The second author also acknowledges financial support from the China Scholarship Council. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Geophysical Union (AGU) | es_ES |
dc.relation.ispartof | Water Resources Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Aquifer model | es_ES |
dc.subject | Arbitrary orientation | es_ES |
dc.subject | Conductivity data | es_ES |
dc.subject | Conductivity measurements | es_ES |
dc.subject | Discretizations | es_ES |
dc.subject | Ensemble Kalman Filter | es_ES |
dc.subject | Ensemble Kalman filtering | es_ES |
dc.subject | Inverse modeling | es_ES |
dc.subject | Monte Carlo approach | es_ES |
dc.subject | Numerical models | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1029/2010WR010214 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2011-23295/ES/MODELACION ESTOCASTICA INVERSA FUERA DE LO NORMAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Li ., L.; Zhou ., H.; Franssen, H.; Gómez-Hernández, JJ. (2012). Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling. Water Resources Research. 48(1):1-19. https://doi.org/10.1029/2010WR010214 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1029/2010WR010214 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 48 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 233952 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.description.references | Allaire , G. S. M. Kaber 2008 Numerical Linear Algebra, Texts Appl. Math. 55 Springer New York | es_ES |
dc.description.references | Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174-188. doi:10.1109/78.978374 | es_ES |
dc.description.references | Behrens, R. A., MacLeod, M. K., Tran, T. T., & Alimi, A. C. (1998). Incorporating Seismic Attribute Maps in 3D Reservoir Models. SPE Reservoir Evaluation & Engineering, 1(02), 122-126. doi:10.2118/36499-pa | es_ES |
dc.description.references | Burgers, G., Jan van Leeuwen, P., & Evensen, G. (1998). Analysis Scheme in the Ensemble Kalman Filter. Monthly Weather Review, 126(6), 1719-1724. doi:10.1175/1520-0493(1998)126<1719:asitek>2.0.co;2 | es_ES |
dc.description.references | Capilla, J. E., & Llopis-Albert, C. (2009). Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory. Journal of Hydrology, 371(1-4), 66-74. doi:10.1016/j.jhydrol.2009.03.015 | es_ES |
dc.description.references | Capilla, J. E., Rodrigo, J., & Gómez-Hernández, J. J. (1999). Mathematical Geology, 31(7), 907-927. doi:10.1023/a:1007580902175 | es_ES |
dc.description.references | Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., & Slooten, L. J. (2005). Inverse problem in hydrogeology. Hydrogeology Journal, 13(1), 206-222. doi:10.1007/s10040-004-0404-7 | es_ES |
dc.description.references | Chen, Y., & Oliver, D. S. (2009). Cross-covariances and localization for EnKF in multiphase flow data assimilation. Computational Geosciences, 14(4), 579-601. doi:10.1007/s10596-009-9174-6 | es_ES |
dc.description.references | Chen, Y., & Zhang, D. (2006). Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Advances in Water Resources, 29(8), 1107-1122. doi:10.1016/j.advwatres.2005.09.007 | es_ES |
dc.description.references | Durlofsky, L. J., Jones, R. C., & Milliken, W. J. (1997). A nonuniform coarsening approach for the scale-up of displacement processes in heterogeneous porous media. Advances in Water Resources, 20(5-6), 335-347. doi:10.1016/s0309-1708(96)00053-x | es_ES |
dc.description.references | Evensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53(4), 343-367. doi:10.1007/s10236-003-0036-9 | es_ES |
dc.description.references | Fu, J., & Jaime Gómez-Hernández, J. (2009). Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. Journal of Hydrology, 364(3-4), 328-341. doi:10.1016/j.jhydrol.2008.11.014 | es_ES |
dc.description.references | Fu, J., Tchelepi, H. A., & Caers, J. (2010). A multiscale adjoint method to compute sensitivity coefficients for flow in heterogeneous porous media. Advances in Water Resources, 33(6), 698-709. doi:10.1016/j.advwatres.2010.04.005 | es_ES |
dc.description.references | Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society, 125(554), 723-757. doi:10.1002/qj.49712555417 | es_ES |
dc.description.references | Gómez-Hernández , J. J. 1991 A stochastic approach to the simulation of block conductivity values conditioned upon data measured at a smaller scale Stanford, Calif. | es_ES |
dc.description.references | Gómez-Hernández , J. J. A. G. Journel 1993 Joint sequential simulation of multi-Gaussian fields Geostatistics Troia '92 Amilcar Soares 1 85 94 Springer Berlin | es_ES |
dc.description.references | Jaime Gómez-Hernández, J., & Mohan Srivastava, R. (1990). ISIM3D: An ANSI-C three-dimensional multiple indicator conditional simulation program. Computers & Geosciences, 16(4), 395-440. doi:10.1016/0098-3004(90)90010-q | es_ES |
dc.description.references | Jaime Gómez-Hernánez, J., Sahuquillo, A., & Capilla, J. (1997). Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory. Journal of Hydrology, 203(1-4), 162-174. doi:10.1016/s0022-1694(97)00098-x | es_ES |
dc.description.references | Guadagnini, A., & Neuman, S. P. (1999). Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains: 1. Theory and computational approach. Water Resources Research, 35(10), 2999-3018. doi:10.1029/1999wr900160 | es_ES |
dc.description.references | Hamill, T. M., Whitaker, J. S., & Snyder, C. (2001). Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter. Monthly Weather Review, 129(11), 2776-2790. doi:10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2 | es_ES |
dc.description.references | Hendricks Franssen , H. 2001 Inverse stochastic modelling of groundwater flow and mass transport Valencia, Spain | es_ES |
dc.description.references | Hendricks Franssen, H. J., & Kinzelbach, W. (2008). Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research, 44(9). doi:10.1029/2007wr006505 | es_ES |
dc.description.references | Franssen, H. J. H., & Kinzelbach, W. (2009). Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. Journal of Hydrology, 365(3-4), 261-274. doi:10.1016/j.jhydrol.2008.11.033 | es_ES |
dc.description.references | Franssen, H.-J. H., Gómez-Hernández, J., & Sahuquillo, A. (2003). Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data. Journal of Hydrology, 281(4), 281-295. doi:10.1016/s0022-1694(03)00191-4 | es_ES |
dc.description.references | Hendricks Franssen, H. J., Alcolea, A., Riva, M., Bakr, M., van der Wiel, N., Stauffer, F., & Guadagnini, A. (2009). A comparison of seven methods for the inverse modelling of groundwater flow. Application to the characterisation of well catchments. Advances in Water Resources, 32(6), 851-872. doi:10.1016/j.advwatres.2009.02.011 | es_ES |
dc.description.references | Houtekamer, P. L., & Mitchell, H. L. (1998). Data Assimilation Using an Ensemble Kalman Filter Technique. Monthly Weather Review, 126(3), 796-811. doi:10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2 | es_ES |
dc.description.references | Hu, L. Y. (2000). Mathematical Geology, 32(1), 87-108. doi:10.1023/a:1007506918588 | es_ES |
dc.description.references | Indelman, P., & Abramovich, B. (1994). Nonlocal properties of nonuniform averaged flows in heterogeneous media. Water Resources Research, 30(12), 3385-3393. doi:10.1029/94wr01782 | es_ES |
dc.description.references | Li, L., Zhou, H., & Jaime Gómez-Hernández, J. (2010). Steady-state saturated groundwater flow modeling with full tensor conductivities using finite differences. Computers & Geosciences, 36(10), 1211-1223. doi:10.1016/j.cageo.2010.04.002 | es_ES |
dc.description.references | Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). Journal of Hydrology, 404(3-4), 278-293. doi:10.1016/j.jhydrol.2011.05.001 | es_ES |
dc.description.references | Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Advances in Water Resources, 34(4), 478-489. doi:10.1016/j.advwatres.2011.01.001 | es_ES |
dc.description.references | Li, L., Zhou, H., Hendricks Franssen, H. J., & Gómez-Hernández, J. J. (2011). Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter. Hydrology and Earth System Sciences Discussions, 8(4), 6749-6788. doi:10.5194/hessd-8-6749-2011 | es_ES |
dc.description.references | Mariethoz, G., Renard, P., & Straubhaar, J. (2010). The Direct Sampling method to perform multiple-point geostatistical simulations. Water Resources Research, 46(11). doi:10.1029/2008wr007621 | es_ES |
dc.description.references | McLaughlin, D., & Townley, L. R. (1996). A Reassessment of the Groundwater Inverse Problem. Water Resources Research, 32(5), 1131-1161. doi:10.1029/96wr00160 | es_ES |
dc.description.references | Naevdal, G., Johnsen, L. M., Aanonsen, S. I., & Vefring, E. H. (2005). Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter. SPE Journal, 10(01), 66-74. doi:10.2118/84372-pa | es_ES |
dc.description.references | Oliver, D. S., & Chen, Y. (2010). Recent progress on reservoir history matching: a review. Computational Geosciences, 15(1), 185-221. doi:10.1007/s10596-010-9194-2 | es_ES |
dc.description.references | Peters, L., Arts, R., Brouwer, G., Geel, C., Cullick, S., Lorentzen, R. J., … Reynolds, A. (2010). Results of the Brugge Benchmark Study for Flooding Optimization and History Matching. SPE Reservoir Evaluation & Engineering, 13(03), 391-405. doi:10.2118/119094-pa | es_ES |
dc.description.references | Renard, P., & de Marsily, G. (1997). Calculating equivalent permeability: a review. Advances in Water Resources, 20(5-6), 253-278. doi:10.1016/s0309-1708(96)00050-4 | es_ES |
dc.description.references | Rubin, Y., & Gómez-Hernández, J. J. (1990). A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations. Water Resources Research, 26(4), 691-701. doi:10.1029/wr026i004p00691 | es_ES |
dc.description.references | Sánchez-Vila, X., Girardi, J. P., & Carrera, J. (1995). A Synthesis of Approaches to Upscaling of Hydraulic Conductivities. Water Resources Research, 31(4), 867-882. doi:10.1029/94wr02754 | es_ES |
dc.description.references | Sanchez-Vila, X., Guadagnini, A., & Carrera, J. (2006). Representative hydraulic conductivities in saturated groundwater flow. Reviews of Geophysics, 44(3). doi:10.1029/2005rg000169 | es_ES |
dc.description.references | Strebelle, S. (2002). Mathematical Geology, 34(1), 1-21. doi:10.1023/a:1014009426274 | es_ES |
dc.description.references | Sun, A. Y., Morris, A. P., & Mohanty, S. (2009). Sequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques. Water Resources Research, 45(7). doi:10.1029/2008wr007443 | es_ES |
dc.description.references | Tran, T. (1996). The ‘missing scale’ and direct simulation of block effective properties. Journal of Hydrology, 183(1-2), 37-56. doi:10.1016/s0022-1694(96)80033-3 | es_ES |
dc.description.references | Tran , T. X. Wen R. Behrens 1999 Efficient conditioning of 3D fine-scale reservoir model to multiphase production data using streamline-based coarse-scale inversion and geostatistical downscaling | es_ES |
dc.description.references | Tureyen, O. I., & Caers, J. (2005). A parallel, multiscale approach to reservoir modeling. Computational Geosciences, 9(2-3), 75-98. doi:10.1007/s10596-005-9004-4 | es_ES |
dc.description.references | Wen, X.-H., & Gómez-Hernández, J. J. (1996). Upscaling hydraulic conductivities in heterogeneous media: An overview. Journal of Hydrology, 183(1-2), ix-xxxii. doi:10.1016/s0022-1694(96)80030-8 | es_ES |
dc.description.references | Wen, X.-H., Deutsch, C. V., & Cullick, A. S. (2002). Construction of geostatistical aquifer models integrating dynamic flow and tracer data using inverse technique. Journal of Hydrology, 255(1-4), 151-168. doi:10.1016/s0022-1694(01)00512-1 | es_ES |
dc.description.references | Wen, X. H., Durlofsky, L. J., & Edwards, M. G. (2003). Mathematical Geology, 35(5), 521-547. doi:10.1023/a:1026230617943 | es_ES |
dc.description.references | Whitaker, J. S., & Hamill, T. M. (2002). Ensemble Data Assimilation without Perturbed Observations. Monthly Weather Review, 130(7), 1913-1924. doi:10.1175/1520-0493(2002)130<1913:edawpo>2.0.co;2 | es_ES |
dc.description.references | White , C. D. R. N. Horne 1987 Computing absolute transmissibility in the presence of fine-scale heterogeneity | es_ES |
dc.description.references | Yeh, W. W.-G. (1986). Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem. Water Resources Research, 22(2), 95-108. doi:10.1029/wr022i002p00095 | es_ES |
dc.description.references | Zhang, D., Lu, Z., & Chen, Y. (2007). Dynamic Reservoir Data Assimilation With an Efficient, Dimension-Reduced Kalman Filter. SPE Journal, 12(01), 108-117. doi:10.2118/95277-pa | es_ES |
dc.description.references | Zhou, H., Li, L., & Jaime Gómez-Hernández, J. (2010). Three-dimensional hydraulic conductivity upscaling in groundwater modeling. Computers & Geosciences, 36(10), 1224-1235. doi:10.1016/j.cageo.2010.03.008 | es_ES |
dc.description.references | Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., & Li, L. (2011). An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Advances in Water Resources, 34(7), 844-864. doi:10.1016/j.advwatres.2011.04.014 | es_ES |
dc.description.references | Zimmerman, D. A., de Marsily, G., Gotway, C. A., Marietta, M. G., Axness, C. L., Beauheim, R. L., … Rubin, Y. (1998). A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resources Research, 34(6), 1373-1413. doi:10.1029/98wr00003 | es_ES |