- -

Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling

Show simple item record

Files in this item

dc.contributor.author Li ., Liangping es_ES
dc.contributor.author Zhou ., Haiyan es_ES
dc.contributor.author Franssen, HJH es_ES
dc.contributor.author Gómez-Hernández, J. Jaime es_ES
dc.date.accessioned 2015-02-12T12:48:05Z
dc.date.available 2015-02-12T12:48:05Z
dc.date.issued 2012-01
dc.identifier.issn 0043-1397
dc.identifier.uri http://hdl.handle.net/10251/46951
dc.description.abstract The ensemble Kalman filter (EnKF) is coupled with upscaling to build an aquifer model at a coarser scale than the scale at which the conditioning data (conductivity and piezometric head) had been taken for the purpose of inverse modeling. Building an aquifer model at the support scale of observations is most often impractical since this would imply numerical models with many millions of cells. If, in addition, an uncertainty analysis is required involving some kind of Monte Carlo approach, the task becomes impossible. For this reason, a methodology has been developed that will use the conductivity data at the scale at which they were collected to build a model at a (much) coarser scale suitable for the inverse modeling of groundwater flow and mass transport. It proceeds as follows: (1) Generate an ensemble of realizations of conductivities conditioned to the conductivity data at the same scale at which conductivities were collected. (2) Upscale each realization onto a coarse discretization; on these coarse realizations, conductivities will become tensorial in nature with arbitrary orientations of their principal components. (3) Apply the EnKF to the ensemble of coarse conductivity upscaled realizations in order to condition the realizations to the measured piezometric head data. The proposed approach addresses the problem of how to deal with tensorial parameters, at a coarse scale, in ensemble Kalman filtering while maintaining the conditioning to the fine-scale hydraulic conductivity measurements. We demonstrate our approach in the framework of a synthetic worth-of-data exercise, in which the relevance of conditioning to conductivities, piezometric heads, or both is analyzed. es_ES
dc.description.sponsorship The authors acknowledge Wolfgang Nowak and three anonymous reviewers for their comments on the previous versions of the manuscript, which helped substantially to improve it. The authors gratefully acknowledge the financial support by the Spanish Ministry of Science and Innovation through project CGL2011-23295. Extra travel grants awarded to the first and second authors by the Ministry of Education (Spain) are also acknowledged. The second author also acknowledges financial support from the China Scholarship Council. en_EN
dc.language Inglés es_ES
dc.publisher American Geophysical Union (AGU) es_ES
dc.relation.ispartof Water Resources Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Aquifer model es_ES
dc.subject Arbitrary orientation es_ES
dc.subject Conductivity data es_ES
dc.subject Conductivity measurements es_ES
dc.subject Discretizations es_ES
dc.subject Ensemble Kalman Filter es_ES
dc.subject Ensemble Kalman filtering es_ES
dc.subject Inverse modeling es_ES
dc.subject Monte Carlo approach es_ES
dc.subject Numerical models es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1029/2010WR010214
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2011-23295/ES/MODELACION ESTOCASTICA INVERSA FUERA DE LO NORMAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Li ., L.; Zhou ., H.; Franssen, H.; Gómez-Hernández, JJ. (2012). Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling. Water Resources Research. 48(1):1-19. https://doi.org/10.1029/2010WR010214 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1029/2010WR010214 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 48 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 233952
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.description.references Allaire , G. S. M. Kaber 2008 Numerical Linear Algebra, Texts Appl. Math. 55 Springer New York es_ES
dc.description.references Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174-188. doi:10.1109/78.978374 es_ES
dc.description.references Behrens, R. A., MacLeod, M. K., Tran, T. T., & Alimi, A. C. (1998). Incorporating Seismic Attribute Maps in 3D Reservoir Models. SPE Reservoir Evaluation & Engineering, 1(02), 122-126. doi:10.2118/36499-pa es_ES
dc.description.references Burgers, G., Jan van Leeuwen, P., & Evensen, G. (1998). Analysis Scheme in the Ensemble Kalman Filter. Monthly Weather Review, 126(6), 1719-1724. doi:10.1175/1520-0493(1998)126<1719:asitek>2.0.co;2 es_ES
dc.description.references Capilla, J. E., & Llopis-Albert, C. (2009). Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory. Journal of Hydrology, 371(1-4), 66-74. doi:10.1016/j.jhydrol.2009.03.015 es_ES
dc.description.references Capilla, J. E., Rodrigo, J., & Gómez-Hernández, J. J. (1999). Mathematical Geology, 31(7), 907-927. doi:10.1023/a:1007580902175 es_ES
dc.description.references Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., & Slooten, L. J. (2005). Inverse problem in hydrogeology. Hydrogeology Journal, 13(1), 206-222. doi:10.1007/s10040-004-0404-7 es_ES
dc.description.references Chen, Y., & Oliver, D. S. (2009). Cross-covariances and localization for EnKF in multiphase flow data assimilation. Computational Geosciences, 14(4), 579-601. doi:10.1007/s10596-009-9174-6 es_ES
dc.description.references Chen, Y., & Zhang, D. (2006). Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Advances in Water Resources, 29(8), 1107-1122. doi:10.1016/j.advwatres.2005.09.007 es_ES
dc.description.references Durlofsky, L. J., Jones, R. C., & Milliken, W. J. (1997). A nonuniform coarsening approach for the scale-up of displacement processes in heterogeneous porous media. Advances in Water Resources, 20(5-6), 335-347. doi:10.1016/s0309-1708(96)00053-x es_ES
dc.description.references Evensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53(4), 343-367. doi:10.1007/s10236-003-0036-9 es_ES
dc.description.references Fu, J., & Jaime Gómez-Hernández, J. (2009). Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. Journal of Hydrology, 364(3-4), 328-341. doi:10.1016/j.jhydrol.2008.11.014 es_ES
dc.description.references Fu, J., Tchelepi, H. A., & Caers, J. (2010). A multiscale adjoint method to compute sensitivity coefficients for flow in heterogeneous porous media. Advances in Water Resources, 33(6), 698-709. doi:10.1016/j.advwatres.2010.04.005 es_ES
dc.description.references Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society, 125(554), 723-757. doi:10.1002/qj.49712555417 es_ES
dc.description.references Gómez-Hernández , J. J. 1991 A stochastic approach to the simulation of block conductivity values conditioned upon data measured at a smaller scale Stanford, Calif. es_ES
dc.description.references Gómez-Hernández , J. J. A. G. Journel 1993 Joint sequential simulation of multi-Gaussian fields Geostatistics Troia '92 Amilcar Soares 1 85 94 Springer Berlin es_ES
dc.description.references Jaime Gómez-Hernández, J., & Mohan Srivastava, R. (1990). ISIM3D: An ANSI-C three-dimensional multiple indicator conditional simulation program. Computers & Geosciences, 16(4), 395-440. doi:10.1016/0098-3004(90)90010-q es_ES
dc.description.references Jaime Gómez-Hernánez, J., Sahuquillo, A., & Capilla, J. (1997). Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory. Journal of Hydrology, 203(1-4), 162-174. doi:10.1016/s0022-1694(97)00098-x es_ES
dc.description.references Guadagnini, A., & Neuman, S. P. (1999). Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains: 1. Theory and computational approach. Water Resources Research, 35(10), 2999-3018. doi:10.1029/1999wr900160 es_ES
dc.description.references Hamill, T. M., Whitaker, J. S., & Snyder, C. (2001). Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter. Monthly Weather Review, 129(11), 2776-2790. doi:10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2 es_ES
dc.description.references Hendricks Franssen , H. 2001 Inverse stochastic modelling of groundwater flow and mass transport Valencia, Spain es_ES
dc.description.references Hendricks Franssen, H. J., & Kinzelbach, W. (2008). Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research, 44(9). doi:10.1029/2007wr006505 es_ES
dc.description.references Franssen, H. J. H., & Kinzelbach, W. (2009). Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. Journal of Hydrology, 365(3-4), 261-274. doi:10.1016/j.jhydrol.2008.11.033 es_ES
dc.description.references Franssen, H.-J. H., Gómez-Hernández, J., & Sahuquillo, A. (2003). Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data. Journal of Hydrology, 281(4), 281-295. doi:10.1016/s0022-1694(03)00191-4 es_ES
dc.description.references Hendricks Franssen, H. J., Alcolea, A., Riva, M., Bakr, M., van der Wiel, N., Stauffer, F., & Guadagnini, A. (2009). A comparison of seven methods for the inverse modelling of groundwater flow. Application to the characterisation of well catchments. Advances in Water Resources, 32(6), 851-872. doi:10.1016/j.advwatres.2009.02.011 es_ES
dc.description.references Houtekamer, P. L., & Mitchell, H. L. (1998). Data Assimilation Using an Ensemble Kalman Filter Technique. Monthly Weather Review, 126(3), 796-811. doi:10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2 es_ES
dc.description.references Hu, L. Y. (2000). Mathematical Geology, 32(1), 87-108. doi:10.1023/a:1007506918588 es_ES
dc.description.references Indelman, P., & Abramovich, B. (1994). Nonlocal properties of nonuniform averaged flows in heterogeneous media. Water Resources Research, 30(12), 3385-3393. doi:10.1029/94wr01782 es_ES
dc.description.references Li, L., Zhou, H., & Jaime Gómez-Hernández, J. (2010). Steady-state saturated groundwater flow modeling with full tensor conductivities using finite differences. Computers & Geosciences, 36(10), 1211-1223. doi:10.1016/j.cageo.2010.04.002 es_ES
dc.description.references Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). Journal of Hydrology, 404(3-4), 278-293. doi:10.1016/j.jhydrol.2011.05.001 es_ES
dc.description.references Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Advances in Water Resources, 34(4), 478-489. doi:10.1016/j.advwatres.2011.01.001 es_ES
dc.description.references Li, L., Zhou, H., Hendricks Franssen, H. J., & Gómez-Hernández, J. J. (2011). Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter. Hydrology and Earth System Sciences Discussions, 8(4), 6749-6788. doi:10.5194/hessd-8-6749-2011 es_ES
dc.description.references Mariethoz, G., Renard, P., & Straubhaar, J. (2010). The Direct Sampling method to perform multiple-point geostatistical simulations. Water Resources Research, 46(11). doi:10.1029/2008wr007621 es_ES
dc.description.references McLaughlin, D., & Townley, L. R. (1996). A Reassessment of the Groundwater Inverse Problem. Water Resources Research, 32(5), 1131-1161. doi:10.1029/96wr00160 es_ES
dc.description.references Naevdal, G., Johnsen, L. M., Aanonsen, S. I., & Vefring, E. H. (2005). Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter. SPE Journal, 10(01), 66-74. doi:10.2118/84372-pa es_ES
dc.description.references Oliver, D. S., & Chen, Y. (2010). Recent progress on reservoir history matching: a review. Computational Geosciences, 15(1), 185-221. doi:10.1007/s10596-010-9194-2 es_ES
dc.description.references Peters, L., Arts, R., Brouwer, G., Geel, C., Cullick, S., Lorentzen, R. J., … Reynolds, A. (2010). Results of the Brugge Benchmark Study for Flooding Optimization and History Matching. SPE Reservoir Evaluation & Engineering, 13(03), 391-405. doi:10.2118/119094-pa es_ES
dc.description.references Renard, P., & de Marsily, G. (1997). Calculating equivalent permeability: a review. Advances in Water Resources, 20(5-6), 253-278. doi:10.1016/s0309-1708(96)00050-4 es_ES
dc.description.references Rubin, Y., & Gómez-Hernández, J. J. (1990). A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations. Water Resources Research, 26(4), 691-701. doi:10.1029/wr026i004p00691 es_ES
dc.description.references Sánchez-Vila, X., Girardi, J. P., & Carrera, J. (1995). A Synthesis of Approaches to Upscaling of Hydraulic Conductivities. Water Resources Research, 31(4), 867-882. doi:10.1029/94wr02754 es_ES
dc.description.references Sanchez-Vila, X., Guadagnini, A., & Carrera, J. (2006). Representative hydraulic conductivities in saturated groundwater flow. Reviews of Geophysics, 44(3). doi:10.1029/2005rg000169 es_ES
dc.description.references Strebelle, S. (2002). Mathematical Geology, 34(1), 1-21. doi:10.1023/a:1014009426274 es_ES
dc.description.references Sun, A. Y., Morris, A. P., & Mohanty, S. (2009). Sequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques. Water Resources Research, 45(7). doi:10.1029/2008wr007443 es_ES
dc.description.references Tran, T. (1996). The ‘missing scale’ and direct simulation of block effective properties. Journal of Hydrology, 183(1-2), 37-56. doi:10.1016/s0022-1694(96)80033-3 es_ES
dc.description.references Tran , T. X. Wen R. Behrens 1999 Efficient conditioning of 3D fine-scale reservoir model to multiphase production data using streamline-based coarse-scale inversion and geostatistical downscaling es_ES
dc.description.references Tureyen, O. I., & Caers, J. (2005). A parallel, multiscale approach to reservoir modeling. Computational Geosciences, 9(2-3), 75-98. doi:10.1007/s10596-005-9004-4 es_ES
dc.description.references Wen, X.-H., & Gómez-Hernández, J. J. (1996). Upscaling hydraulic conductivities in heterogeneous media: An overview. Journal of Hydrology, 183(1-2), ix-xxxii. doi:10.1016/s0022-1694(96)80030-8 es_ES
dc.description.references Wen, X.-H., Deutsch, C. V., & Cullick, A. S. (2002). Construction of geostatistical aquifer models integrating dynamic flow and tracer data using inverse technique. Journal of Hydrology, 255(1-4), 151-168. doi:10.1016/s0022-1694(01)00512-1 es_ES
dc.description.references Wen, X. H., Durlofsky, L. J., & Edwards, M. G. (2003). Mathematical Geology, 35(5), 521-547. doi:10.1023/a:1026230617943 es_ES
dc.description.references Whitaker, J. S., & Hamill, T. M. (2002). Ensemble Data Assimilation without Perturbed Observations. Monthly Weather Review, 130(7), 1913-1924. doi:10.1175/1520-0493(2002)130<1913:edawpo>2.0.co;2 es_ES
dc.description.references White , C. D. R. N. Horne 1987 Computing absolute transmissibility in the presence of fine-scale heterogeneity es_ES
dc.description.references Yeh, W. W.-G. (1986). Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem. Water Resources Research, 22(2), 95-108. doi:10.1029/wr022i002p00095 es_ES
dc.description.references Zhang, D., Lu, Z., & Chen, Y. (2007). Dynamic Reservoir Data Assimilation With an Efficient, Dimension-Reduced Kalman Filter. SPE Journal, 12(01), 108-117. doi:10.2118/95277-pa es_ES
dc.description.references Zhou, H., Li, L., & Jaime Gómez-Hernández, J. (2010). Three-dimensional hydraulic conductivity upscaling in groundwater modeling. Computers & Geosciences, 36(10), 1224-1235. doi:10.1016/j.cageo.2010.03.008 es_ES
dc.description.references Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., & Li, L. (2011). An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Advances in Water Resources, 34(7), 844-864. doi:10.1016/j.advwatres.2011.04.014 es_ES
dc.description.references Zimmerman, D. A., de Marsily, G., Gotway, C. A., Marietta, M. G., Axness, C. L., Beauheim, R. L., … Rubin, Y. (1998). A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resources Research, 34(6), 1373-1413. doi:10.1029/98wr00003 es_ES


This item appears in the following Collection(s)

Show simple item record