- -

Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling

Mostrar el registro completo del ítem

Li ., L.; Zhou ., H.; Franssen, H.; Gómez-Hernández, JJ. (2012). Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling. Water Resources Research. 48(1):1-19. https://doi.org/10.1029/2010WR010214

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/46951

Ficheros en el ítem

Metadatos del ítem

Título: Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling
Autor: Li ., Liangping Zhou ., Haiyan Franssen, HJH Gómez-Hernández, J. Jaime
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
The ensemble Kalman filter (EnKF) is coupled with upscaling to build an aquifer model at a coarser scale than the scale at which the conditioning data (conductivity and piezometric head) had been taken for the purpose of ...[+]
Palabras clave: Aquifer model , Arbitrary orientation , Conductivity data , Conductivity measurements , Discretizations , Ensemble Kalman Filter , Ensemble Kalman filtering , Inverse modeling , Monte Carlo approach , Numerical models
Derechos de uso: Reserva de todos los derechos
Fuente:
Water Resources Research. (issn: 0043-1397 )
DOI: 10.1029/2010WR010214
Editorial:
American Geophysical Union (AGU)
Versión del editor: http://dx.doi.org/10.1029/2010WR010214
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CGL2011-23295/ES/MODELACION ESTOCASTICA INVERSA FUERA DE LO NORMAL/
Agradecimientos:
The authors acknowledge Wolfgang Nowak and three anonymous reviewers for their comments on the previous versions of the manuscript, which helped substantially to improve it. The authors gratefully acknowledge the financial ...[+]
Tipo: Artículo

References

Allaire , G. S. M. Kaber 2008 Numerical Linear Algebra, Texts Appl. Math. 55 Springer New York

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174-188. doi:10.1109/78.978374

Behrens, R. A., MacLeod, M. K., Tran, T. T., & Alimi, A. C. (1998). Incorporating Seismic Attribute Maps in 3D Reservoir Models. SPE Reservoir Evaluation & Engineering, 1(02), 122-126. doi:10.2118/36499-pa [+]
Allaire , G. S. M. Kaber 2008 Numerical Linear Algebra, Texts Appl. Math. 55 Springer New York

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174-188. doi:10.1109/78.978374

Behrens, R. A., MacLeod, M. K., Tran, T. T., & Alimi, A. C. (1998). Incorporating Seismic Attribute Maps in 3D Reservoir Models. SPE Reservoir Evaluation & Engineering, 1(02), 122-126. doi:10.2118/36499-pa

Burgers, G., Jan van Leeuwen, P., & Evensen, G. (1998). Analysis Scheme in the Ensemble Kalman Filter. Monthly Weather Review, 126(6), 1719-1724. doi:10.1175/1520-0493(1998)126<1719:asitek>2.0.co;2

Capilla, J. E., & Llopis-Albert, C. (2009). Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory. Journal of Hydrology, 371(1-4), 66-74. doi:10.1016/j.jhydrol.2009.03.015

Capilla, J. E., Rodrigo, J., & Gómez-Hernández, J. J. (1999). Mathematical Geology, 31(7), 907-927. doi:10.1023/a:1007580902175

Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., & Slooten, L. J. (2005). Inverse problem in hydrogeology. Hydrogeology Journal, 13(1), 206-222. doi:10.1007/s10040-004-0404-7

Chen, Y., & Oliver, D. S. (2009). Cross-covariances and localization for EnKF in multiphase flow data assimilation. Computational Geosciences, 14(4), 579-601. doi:10.1007/s10596-009-9174-6

Chen, Y., & Zhang, D. (2006). Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Advances in Water Resources, 29(8), 1107-1122. doi:10.1016/j.advwatres.2005.09.007

Durlofsky, L. J., Jones, R. C., & Milliken, W. J. (1997). A nonuniform coarsening approach for the scale-up of displacement processes in heterogeneous porous media. Advances in Water Resources, 20(5-6), 335-347. doi:10.1016/s0309-1708(96)00053-x

Evensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53(4), 343-367. doi:10.1007/s10236-003-0036-9

Fu, J., & Jaime Gómez-Hernández, J. (2009). Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. Journal of Hydrology, 364(3-4), 328-341. doi:10.1016/j.jhydrol.2008.11.014

Fu, J., Tchelepi, H. A., & Caers, J. (2010). A multiscale adjoint method to compute sensitivity coefficients for flow in heterogeneous porous media. Advances in Water Resources, 33(6), 698-709. doi:10.1016/j.advwatres.2010.04.005

Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society, 125(554), 723-757. doi:10.1002/qj.49712555417

Gómez-Hernández , J. J. 1991 A stochastic approach to the simulation of block conductivity values conditioned upon data measured at a smaller scale Stanford, Calif.

Gómez-Hernández , J. J. A. G. Journel 1993 Joint sequential simulation of multi-Gaussian fields Geostatistics Troia '92 Amilcar Soares 1 85 94 Springer Berlin

Jaime Gómez-Hernández, J., & Mohan Srivastava, R. (1990). ISIM3D: An ANSI-C three-dimensional multiple indicator conditional simulation program. Computers & Geosciences, 16(4), 395-440. doi:10.1016/0098-3004(90)90010-q

Jaime Gómez-Hernánez, J., Sahuquillo, A., & Capilla, J. (1997). Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory. Journal of Hydrology, 203(1-4), 162-174. doi:10.1016/s0022-1694(97)00098-x

Guadagnini, A., & Neuman, S. P. (1999). Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains: 1. Theory and computational approach. Water Resources Research, 35(10), 2999-3018. doi:10.1029/1999wr900160

Hamill, T. M., Whitaker, J. S., & Snyder, C. (2001). Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter. Monthly Weather Review, 129(11), 2776-2790. doi:10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2

Hendricks Franssen , H. 2001 Inverse stochastic modelling of groundwater flow and mass transport Valencia, Spain

Hendricks Franssen, H. J., & Kinzelbach, W. (2008). Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research, 44(9). doi:10.1029/2007wr006505

Franssen, H. J. H., & Kinzelbach, W. (2009). Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. Journal of Hydrology, 365(3-4), 261-274. doi:10.1016/j.jhydrol.2008.11.033

Franssen, H.-J. H., Gómez-Hernández, J., & Sahuquillo, A. (2003). Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data. Journal of Hydrology, 281(4), 281-295. doi:10.1016/s0022-1694(03)00191-4

Hendricks Franssen, H. J., Alcolea, A., Riva, M., Bakr, M., van der Wiel, N., Stauffer, F., & Guadagnini, A. (2009). A comparison of seven methods for the inverse modelling of groundwater flow. Application to the characterisation of well catchments. Advances in Water Resources, 32(6), 851-872. doi:10.1016/j.advwatres.2009.02.011

Houtekamer, P. L., & Mitchell, H. L. (1998). Data Assimilation Using an Ensemble Kalman Filter Technique. Monthly Weather Review, 126(3), 796-811. doi:10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2

Hu, L. Y. (2000). Mathematical Geology, 32(1), 87-108. doi:10.1023/a:1007506918588

Indelman, P., & Abramovich, B. (1994). Nonlocal properties of nonuniform averaged flows in heterogeneous media. Water Resources Research, 30(12), 3385-3393. doi:10.1029/94wr01782

Li, L., Zhou, H., & Jaime Gómez-Hernández, J. (2010). Steady-state saturated groundwater flow modeling with full tensor conductivities using finite differences. Computers & Geosciences, 36(10), 1211-1223. doi:10.1016/j.cageo.2010.04.002

Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). Journal of Hydrology, 404(3-4), 278-293. doi:10.1016/j.jhydrol.2011.05.001

Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Advances in Water Resources, 34(4), 478-489. doi:10.1016/j.advwatres.2011.01.001

Li, L., Zhou, H., Hendricks Franssen, H. J., & Gómez-Hernández, J. J. (2011). Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter. Hydrology and Earth System Sciences Discussions, 8(4), 6749-6788. doi:10.5194/hessd-8-6749-2011

Mariethoz, G., Renard, P., & Straubhaar, J. (2010). The Direct Sampling method to perform multiple-point geostatistical simulations. Water Resources Research, 46(11). doi:10.1029/2008wr007621

McLaughlin, D., & Townley, L. R. (1996). A Reassessment of the Groundwater Inverse Problem. Water Resources Research, 32(5), 1131-1161. doi:10.1029/96wr00160

Naevdal, G., Johnsen, L. M., Aanonsen, S. I., & Vefring, E. H. (2005). Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter. SPE Journal, 10(01), 66-74. doi:10.2118/84372-pa

Oliver, D. S., & Chen, Y. (2010). Recent progress on reservoir history matching: a review. Computational Geosciences, 15(1), 185-221. doi:10.1007/s10596-010-9194-2

Peters, L., Arts, R., Brouwer, G., Geel, C., Cullick, S., Lorentzen, R. J., … Reynolds, A. (2010). Results of the Brugge Benchmark Study for Flooding Optimization and History Matching. SPE Reservoir Evaluation & Engineering, 13(03), 391-405. doi:10.2118/119094-pa

Renard, P., & de Marsily, G. (1997). Calculating equivalent permeability: a review. Advances in Water Resources, 20(5-6), 253-278. doi:10.1016/s0309-1708(96)00050-4

Rubin, Y., & Gómez-Hernández, J. J. (1990). A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations. Water Resources Research, 26(4), 691-701. doi:10.1029/wr026i004p00691

Sánchez-Vila, X., Girardi, J. P., & Carrera, J. (1995). A Synthesis of Approaches to Upscaling of Hydraulic Conductivities. Water Resources Research, 31(4), 867-882. doi:10.1029/94wr02754

Sanchez-Vila, X., Guadagnini, A., & Carrera, J. (2006). Representative hydraulic conductivities in saturated groundwater flow. Reviews of Geophysics, 44(3). doi:10.1029/2005rg000169

Strebelle, S. (2002). Mathematical Geology, 34(1), 1-21. doi:10.1023/a:1014009426274

Sun, A. Y., Morris, A. P., & Mohanty, S. (2009). Sequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques. Water Resources Research, 45(7). doi:10.1029/2008wr007443

Tran, T. (1996). The ‘missing scale’ and direct simulation of block effective properties. Journal of Hydrology, 183(1-2), 37-56. doi:10.1016/s0022-1694(96)80033-3

Tran , T. X. Wen R. Behrens 1999 Efficient conditioning of 3D fine-scale reservoir model to multiphase production data using streamline-based coarse-scale inversion and geostatistical downscaling

Tureyen, O. I., & Caers, J. (2005). A parallel, multiscale approach to reservoir modeling. Computational Geosciences, 9(2-3), 75-98. doi:10.1007/s10596-005-9004-4

Wen, X.-H., & Gómez-Hernández, J. J. (1996). Upscaling hydraulic conductivities in heterogeneous media: An overview. Journal of Hydrology, 183(1-2), ix-xxxii. doi:10.1016/s0022-1694(96)80030-8

Wen, X.-H., Deutsch, C. V., & Cullick, A. S. (2002). Construction of geostatistical aquifer models integrating dynamic flow and tracer data using inverse technique. Journal of Hydrology, 255(1-4), 151-168. doi:10.1016/s0022-1694(01)00512-1

Wen, X. H., Durlofsky, L. J., & Edwards, M. G. (2003). Mathematical Geology, 35(5), 521-547. doi:10.1023/a:1026230617943

Whitaker, J. S., & Hamill, T. M. (2002). Ensemble Data Assimilation without Perturbed Observations. Monthly Weather Review, 130(7), 1913-1924. doi:10.1175/1520-0493(2002)130<1913:edawpo>2.0.co;2

White , C. D. R. N. Horne 1987 Computing absolute transmissibility in the presence of fine-scale heterogeneity

Yeh, W. W.-G. (1986). Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem. Water Resources Research, 22(2), 95-108. doi:10.1029/wr022i002p00095

Zhang, D., Lu, Z., & Chen, Y. (2007). Dynamic Reservoir Data Assimilation With an Efficient, Dimension-Reduced Kalman Filter. SPE Journal, 12(01), 108-117. doi:10.2118/95277-pa

Zhou, H., Li, L., & Jaime Gómez-Hernández, J. (2010). Three-dimensional hydraulic conductivity upscaling in groundwater modeling. Computers & Geosciences, 36(10), 1224-1235. doi:10.1016/j.cageo.2010.03.008

Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., & Li, L. (2011). An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Advances in Water Resources, 34(7), 844-864. doi:10.1016/j.advwatres.2011.04.014

Zimmerman, D. A., de Marsily, G., Gotway, C. A., Marietta, M. G., Axness, C. L., Beauheim, R. L., … Rubin, Y. (1998). A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resources Research, 34(6), 1373-1413. doi:10.1029/98wr00003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem