- -

Identification of Active Surface Species for Friedel Crafts Acylation and Koch Carbonylation Reactions by in situ Solid-State NMR Spectroscopy

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Identification of Active Surface Species for Friedel Crafts Acylation and Koch Carbonylation Reactions by in situ Solid-State NMR Spectroscopy

Show full item record

Lezcano González, I.; Vidal Moya, JA.; Boronat Zaragoza, M.; Blasco Lanzuela, T.; Corma Canós, A. (2013). Identification of Active Surface Species for Friedel Crafts Acylation and Koch Carbonylation Reactions by in situ Solid-State NMR Spectroscopy. Angewandte Chemie International Edition. 52(19):5138-5141. doi:10.1002/anie.201209907

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47186

Files in this item

Item Metadata

Title: Identification of Active Surface Species for Friedel Crafts Acylation and Koch Carbonylation Reactions by in situ Solid-State NMR Spectroscopy
Author: Lezcano González, Inés Vidal Moya, José Alejandro Boronat Zaragoza, Mercedes Blasco Lanzuela, Teresa Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
Finding the culprits: In situ NMR spectroscopy combined with theoretical calculations show the formation of acetyl species covalently bound to framework oxygen atoms in acid zeolites. These species, and not the usually ...[+]
Subjects: Acid catalysts , Density functional theory; , Heterogeneous catalysis , NMR spectroscopy , Zeolites
Copyrigths: Cerrado
Source:
Angewandte Chemie International Edition. (issn: 1433-7851 ) (eissn: 1521-3773 )
DOI: 10.1002/anie.201209907
Publisher:
Wiley-VCH Verlag
Publisher version: http://dx.doi.org/10.1002/anie.201209907
Project ID:
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/
info:eu-repo/grantAgreement/MINECO//MAT2012-38567-C02-01/ES/MATERIALES ZEOLITICOS COMO ESTRUCTURAS ANFITRIONAS DE NANOPARTICULAS. SINTESIS Y APLICACIONES NANOTECNOLOGICAS, CATALITICAS Y MEDIOAMBIENTALES/
info:eu-repo/grantAgreement/MINECO//CTQ2012-37925-C03-01/ES/CATALIZADORES PARA LA ENERGIA Y EL MEDIOAMBIENTE: ACTIVACION SELECTIVA DE ENLACES S-H Y C-H/
Thanks:
The authors acknowledge Spanish MINECO (Projects MAT-2012-38567-C02-01, CTQ-2012-37925-C03-01 and Consolider Ingenio 2010-MULTICAT, CSD2009-00050).
Type: Artículo

References

Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

Sartori, G., & Maggi, R. (2006). Use of Solid Catalysts in Friedel−Crafts Acylation Reactions†. Chemical Reviews, 106(3), 1077-1104. doi:10.1021/cr040695c

Corma, A., JoséCliment, M., García, H., & Primo, J. (1989). Design of synthetic zeolites as catalysts in organic reactions. Applied Catalysis, 49(1), 109-123. doi:10.1016/s0166-9834(00)81427-x [+]
Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

Sartori, G., & Maggi, R. (2006). Use of Solid Catalysts in Friedel−Crafts Acylation Reactions†. Chemical Reviews, 106(3), 1077-1104. doi:10.1021/cr040695c

Corma, A., JoséCliment, M., García, H., & Primo, J. (1989). Design of synthetic zeolites as catalysts in organic reactions. Applied Catalysis, 49(1), 109-123. doi:10.1016/s0166-9834(00)81427-x

Xu, T., Torres, P. D., Beck, L. W., & Haw, J. F. (1995). Preparation and NMR Characterization of Carbenium Ions on Metal Halide Powders. Journal of the American Chemical Society, 117(30), 8027-8028. doi:10.1021/ja00135a026

Bosáček, V., Gunnewegh, E. A., & van Bekkum, H. (1996). Surface complexes in zeolite-catalysed acylation reactions detected by13C MAS NMR spectroscopy. Catalysis Letters, 39(1-2), 57-62. doi:10.1007/bf00813730

Luzgin, M. V., Romannikov, V. N., Stepanov, A. G., & Zamaraev, K. I. (1996). Interaction of Olefins with Carbon Monoxide on Zeolite H-ZSM-5. NMR Observation of the Friedel−Crafts Acylation of Alkenes at Ambient Temperature. Journal of the American Chemical Society, 118(44), 10890-10891. doi:10.1021/ja9615381

Jiang, Y., Hunger, M., & Wang, W. (2006). On the Reactivity of Surface Methoxy Species in Acidic Zeolites. Journal of the American Chemical Society, 128(35), 11679-11692. doi:10.1021/ja061018y

Wang, W., & Hunger, M. (2008). Reactivity of Surface Alkoxy Species on Acidic Zeolite Catalysts. Accounts of Chemical Research, 41(8), 895-904. doi:10.1021/ar700210f

Cheung, P., Bhan, A., Sunley, G. J., & Iglesia, E. (2006). Selective Carbonylation of Dimethyl Ether to Methyl Acetate Catalyzed by Acidic Zeolites. Angewandte Chemie, 118(10), 1647-1650. doi:10.1002/ange.200503898

Cheung, P., Bhan, A., Sunley, G. J., & Iglesia, E. (2006). Selective Carbonylation of Dimethyl Ether to Methyl Acetate Catalyzed by Acidic Zeolites. Angewandte Chemie International Edition, 45(10), 1617-1620. doi:10.1002/anie.200503898

CHEUNG, P., BHAN, A., SUNLEY, G., LAW, D., & IGLESIA, E. (2007). Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites. Journal of Catalysis, 245(1), 110-123. doi:10.1016/j.jcat.2006.09.020

Blasco, T., Boronat, M., Concepción, P., Corma, A., Law, D., & Vidal-Moya, J. A. (2007). Carbonylation of Methanol on Metal–Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center. Angewandte Chemie, 119(21), 4012-4015. doi:10.1002/ange.200700029

Blasco, T., Boronat, M., Concepción, P., Corma, A., Law, D., & Vidal-Moya, J. A. (2007). Carbonylation of Methanol on Metal–Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center. Angewandte Chemie International Edition, 46(21), 3938-3941. doi:10.1002/anie.200700029

Bhan, A., & Iglesia, E. (2008). A Link between Reactivity and Local Structure in Acid Catalysis on Zeolites. Accounts of Chemical Research, 41(4), 559-567. doi:10.1021/ar700181t

Stepanov, A. G., Luzgin, M. V., Romannikov, V. N., & Zamaraev, K. I. (1995). NMR Observation of the Koch Reaction in Zeolite H-ZSM-5 under Mild Conditions. Journal of the American Chemical Society, 117(12), 3615-3616. doi:10.1021/ja00117a032

Blasco, T. (2010). Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chemical Society Reviews, 39(12), 4685. doi:10.1039/c0cs00033g

Luzgin, M. V., Kazantsev, M. S., Wang, W., & Stepanov, A. G. (2009). Reactivity of Methoxy Species toward CO on Keggin 12-H3PW12O40: A Study with Solid State NMR. The Journal of Physical Chemistry C, 113(45), 19639-19644. doi:10.1021/jp906888m

Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m

Boronat, M., Martínez, C., & Corma, A. (2011). Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite. Physical Chemistry Chemical Physics, 13(7), 2603. doi:10.1039/c0cp01996h

Wang, X., Qi, G., Xu, J., Li, B., Wang, C., & Deng, F. (2012). NMR-Spectroscopic Evidence of Intermediate-Dependent Pathways for Acetic Acid Formation from Methane and Carbon Monoxide over a ZnZSM-5 Zeolite Catalyst. Angewandte Chemie, 124(16), 3916-3919. doi:10.1002/ange.201108634

Wang, X., Qi, G., Xu, J., Li, B., Wang, C., & Deng, F. (2012). NMR-Spectroscopic Evidence of Intermediate-Dependent Pathways for Acetic Acid Formation from Methane and Carbon Monoxide over a ZnZSM-5 Zeolite Catalyst. Angewandte Chemie International Edition, 51(16), 3850-3853. doi:10.1002/anie.201108634

Derouane, E. G., Dillon, C. J., Bethell, D., & Derouane-Abd Hamid, S. B. (1999). Zeolite Catalysts as Solid Solvents in Fine Chemicals Synthesis. Journal of Catalysis, 187(1), 209-218. doi:10.1006/jcat.1999.2575

Fernández, A. B., Boronat, M., Blasco, T., & Corma, A. (2005). Establishing a Molecular Mechanism for the Beckmann Rearrangement of Oximes over Microporous Molecular Sieves. Angewandte Chemie, 117(16), 2422-2425. doi:10.1002/ange.200462737

Fernández, A. B., Boronat, M., Blasco, T., & Corma, A. (2005). Establishing a Molecular Mechanism for the Beckmann Rearrangement of Oximes over Microporous Molecular Sieves. Angewandte Chemie International Edition, 44(16), 2370-2373. doi:10.1002/anie.200462737

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913

Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244

Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28(3), 213-222. doi:10.1007/bf00533485

Ditchfield, R. (1974). Self-consistent perturbation theory of diamagnetism. Molecular Physics, 27(4), 789-807. doi:10.1080/00268977400100711

Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251-8260. doi:10.1021/ja00179a005

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record