Dey, G. R. (2007). Chemical Reduction of CO2 to Different Products during Photo Catalytic Reaction on TiO2 under Diverse Conditions: an Overview. Journal of Natural Gas Chemistry, 16(3), 217-226. doi:10.1016/s1003-9953(07)60052-8
Navalón, S., Dhakshinamoorthy, A., Álvaro, M., & Garcia, H. (2013). Photocatalytic CO2Reduction using Non-Titanium Metal Oxides and Sulfides. ChemSusChem, 6(4), 562-577. doi:10.1002/cssc.201200670
Hwang, J.-S., Chang, J.-S., Park, S.-E., Ikeue, K., & Anpo, M. (2005). Photoreduction of Carbondioxide on Surface Functionalized Nanoporous Catalysts. Topics in Catalysis, 35(3-4), 311-319. doi:10.1007/s11244-005-3839-8
[+]
Dey, G. R. (2007). Chemical Reduction of CO2 to Different Products during Photo Catalytic Reaction on TiO2 under Diverse Conditions: an Overview. Journal of Natural Gas Chemistry, 16(3), 217-226. doi:10.1016/s1003-9953(07)60052-8
Navalón, S., Dhakshinamoorthy, A., Álvaro, M., & Garcia, H. (2013). Photocatalytic CO2Reduction using Non-Titanium Metal Oxides and Sulfides. ChemSusChem, 6(4), 562-577. doi:10.1002/cssc.201200670
Hwang, J.-S., Chang, J.-S., Park, S.-E., Ikeue, K., & Anpo, M. (2005). Photoreduction of Carbondioxide on Surface Functionalized Nanoporous Catalysts. Topics in Catalysis, 35(3-4), 311-319. doi:10.1007/s11244-005-3839-8
INOUE, T., FUJISHIMA, A., KONISHI, S., & HONDA, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698), 637-638. doi:10.1038/277637a0
Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J., & Šolcová, O. (2009). Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 89(3-4), 494-502. doi:10.1016/j.apcatb.2009.01.010
Leitner, W. (1995). Kohlendioxid als Rohstoff am Beispiel der Synthese von Ameisensäure und ihren Derivaten. Angewandte Chemie, 107(20), 2391-2405. doi:10.1002/ange.19951072005
Leitner, W. (1995). Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2. Angewandte Chemie International Edition in English, 34(20), 2207-2221. doi:10.1002/anie.199522071
RSC Adv. 2012
Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341-357. doi:10.1021/cr00017a016
Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004
Bahnemann, D. W. (2000). Current challenges in photocatalysis: Improved photocatalysts and appropriate photoreactor engineering. Research on Chemical Intermediates, 26(2), 207-220. doi:10.1163/156856700x00255
Primo, A., Corma, A., & García, H. (2011). Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys., 13(3), 886-910. doi:10.1039/c0cp00917b
Primo, A., Marino, T., Corma, A., Molinari, R., & García, H. (2011). Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 133(18), 6930-6933. doi:10.1021/ja2011498
Sakthivel, S., Janczarek, M., & Kisch, H. (2004). Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2. The Journal of Physical Chemistry B, 108(50), 19384-19387. doi:10.1021/jp046857q
Sakthivel, S., Shankar, M. ., Palanichamy, M., Arabindoo, B., Bahnemann, D. ., & Murugesan, V. (2004). Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38(13), 3001-3008. doi:10.1016/j.watres.2004.04.046
Gomes Silva, C., Juárez, R., Marino, T., Molinari, R., & García, H. (2011). Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 133(3), 595-602. doi:10.1021/ja1086358
Herrmann, J.-M. (1986). Metal-TiO2Catalysts. Strong Metal-Support Interactions, 200-211. doi:10.1021/bk-1986-0298.ch020
Adv. Funct. Mater. 2013
Dare-Edwards, M. P., Goodenough, J. B., Hamnett, A., & Nicholson, N. D. (1981). Photoelectrochemistry of nickel(II) oxide. Journal of the Chemical Society, Faraday Transactions 2, 77(4), 643. doi:10.1039/f29817700643
Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344. doi:10.1038/35104607
Xie, Y. P., Liu, G., Yin, L., & Cheng, H.-M. (2012). Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. Journal of Materials Chemistry, 22(14), 6746. doi:10.1039/c2jm16178h
Yuliati, L., & Yoshida, H. (2008). Photocatalytic conversion of methane. Chemical Society Reviews, 37(8), 1592. doi:10.1039/b710575b
[-]