- -

Visible-ligth photocatalytic conversions of carbon monoxide to methane by nickel (II) oxide

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Visible-ligth photocatalytic conversions of carbon monoxide to methane by nickel (II) oxide

Mostrar el registro completo del ítem

Sastre Calabuig, F.; Corma Canós, A.; García Gómez, H. (2013). Visible-ligth photocatalytic conversions of carbon monoxide to methane by nickel (II) oxide. Angewandte Chemie International Edition. 52(49):12983-12987. https://doi.org/10.1002/anie.201307851

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47189

Ficheros en el ítem

Metadatos del ítem

Título: Visible-ligth photocatalytic conversions of carbon monoxide to methane by nickel (II) oxide
Autor: Sastre Calabuig, Francesc Corma Canós, Avelino García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Solar Fuels: Different n- and p-type semiconductors have been investigated for sustainable solar fuel production. p-Type semiconductors, such as NiO, Fe3O4, Co3O4, and CuO, are able to reduce carbon monoxide by water or ...[+]
Palabras clave: Methane formation , Metal oxides , Photocatalysis , Semiconductors , Solar fuels
Derechos de uso: Cerrado
Fuente:
Angewandte Chemie International Edition. (issn: 1433-7851 ) (eissn: 1521-3773 )
DOI: 10.1002/anie.201307851
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/anie.201307851
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
Agradecimientos:
Financial support by the Spanish Ministry of Economy and Competitiveness (MINECO) through several actions (Severo Ochoa and grant number CTQ 2012-32315) is gratefully acknowledged.
Tipo: Artículo

References

Dey, G. R. (2007). Chemical Reduction of CO2 to Different Products during Photo Catalytic Reaction on TiO2 under Diverse Conditions: an Overview. Journal of Natural Gas Chemistry, 16(3), 217-226. doi:10.1016/s1003-9953(07)60052-8

Navalón, S., Dhakshinamoorthy, A., Álvaro, M., & Garcia, H. (2013). Photocatalytic CO2Reduction using Non-Titanium Metal Oxides and Sulfides. ChemSusChem, 6(4), 562-577. doi:10.1002/cssc.201200670

Hwang, J.-S., Chang, J.-S., Park, S.-E., Ikeue, K., & Anpo, M. (2005). Photoreduction of Carbondioxide on Surface Functionalized Nanoporous Catalysts. Topics in Catalysis, 35(3-4), 311-319. doi:10.1007/s11244-005-3839-8 [+]
Dey, G. R. (2007). Chemical Reduction of CO2 to Different Products during Photo Catalytic Reaction on TiO2 under Diverse Conditions: an Overview. Journal of Natural Gas Chemistry, 16(3), 217-226. doi:10.1016/s1003-9953(07)60052-8

Navalón, S., Dhakshinamoorthy, A., Álvaro, M., & Garcia, H. (2013). Photocatalytic CO2Reduction using Non-Titanium Metal Oxides and Sulfides. ChemSusChem, 6(4), 562-577. doi:10.1002/cssc.201200670

Hwang, J.-S., Chang, J.-S., Park, S.-E., Ikeue, K., & Anpo, M. (2005). Photoreduction of Carbondioxide on Surface Functionalized Nanoporous Catalysts. Topics in Catalysis, 35(3-4), 311-319. doi:10.1007/s11244-005-3839-8

INOUE, T., FUJISHIMA, A., KONISHI, S., & HONDA, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698), 637-638. doi:10.1038/277637a0

Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J., & Šolcová, O. (2009). Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 89(3-4), 494-502. doi:10.1016/j.apcatb.2009.01.010

Leitner, W. (1995). Kohlendioxid als Rohstoff am Beispiel der Synthese von Ameisensäure und ihren Derivaten. Angewandte Chemie, 107(20), 2391-2405. doi:10.1002/ange.19951072005

Leitner, W. (1995). Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2. Angewandte Chemie International Edition in English, 34(20), 2207-2221. doi:10.1002/anie.199522071

RSC Adv. 2012

Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341-357. doi:10.1021/cr00017a016

Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004

Bahnemann, D. W. (2000). Current challenges in photocatalysis: Improved photocatalysts and appropriate photoreactor engineering. Research on Chemical Intermediates, 26(2), 207-220. doi:10.1163/156856700x00255

Primo, A., Corma, A., & García, H. (2011). Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys., 13(3), 886-910. doi:10.1039/c0cp00917b

Primo, A., Marino, T., Corma, A., Molinari, R., & García, H. (2011). Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 133(18), 6930-6933. doi:10.1021/ja2011498

Sakthivel, S., Janczarek, M., & Kisch, H. (2004). Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2. The Journal of Physical Chemistry B, 108(50), 19384-19387. doi:10.1021/jp046857q

Sakthivel, S., Shankar, M. ., Palanichamy, M., Arabindoo, B., Bahnemann, D. ., & Murugesan, V. (2004). Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38(13), 3001-3008. doi:10.1016/j.watres.2004.04.046

Gomes Silva, C., Juárez, R., Marino, T., Molinari, R., & García, H. (2011). Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 133(3), 595-602. doi:10.1021/ja1086358

Herrmann, J.-M. (1986). Metal-TiO2Catalysts. Strong Metal-Support Interactions, 200-211. doi:10.1021/bk-1986-0298.ch020

Adv. Funct. Mater. 2013

Dare-Edwards, M. P., Goodenough, J. B., Hamnett, A., & Nicholson, N. D. (1981). Photoelectrochemistry of nickel(II) oxide. Journal of the Chemical Society, Faraday Transactions 2, 77(4), 643. doi:10.1039/f29817700643

Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344. doi:10.1038/35104607

Xie, Y. P., Liu, G., Yin, L., & Cheng, H.-M. (2012). Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. Journal of Materials Chemistry, 22(14), 6746. doi:10.1039/c2jm16178h

Yuliati, L., & Yoshida, H. (2008). Photocatalytic conversion of methane. Chemical Society Reviews, 37(8), 1592. doi:10.1039/b710575b

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem