Mostrar el registro sencillo del ítem
dc.contributor.author | Sastre Calabuig, Francesc | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2015-02-17T11:41:47Z | |
dc.date.issued | 2013-12-02 | |
dc.identifier.issn | 1433-7851 | |
dc.identifier.uri | http://hdl.handle.net/10251/47189 | |
dc.description.abstract | Solar Fuels: Different n- and p-type semiconductors have been investigated for sustainable solar fuel production. p-Type semiconductors, such as NiO, Fe3O4, Co3O4, and CuO, are able to reduce carbon monoxide by water or hydrogen to methane (see picture). The highest CH4 yield achieved was 17.26 mmol of CH4 per gram of catalyst using NiO in an excess of H2. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Economy and Competitiveness (MINECO) through several actions (Severo Ochoa and grant number CTQ 2012-32315) is gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Angewandte Chemie International Edition | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Methane formation | es_ES |
dc.subject | Metal oxides | es_ES |
dc.subject | Photocatalysis | es_ES |
dc.subject | Semiconductors | es_ES |
dc.subject | Solar fuels | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Visible-ligth photocatalytic conversions of carbon monoxide to methane by nickel (II) oxide | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/anie.201307851 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Sastre Calabuig, F.; Corma Canós, A.; García Gómez, H. (2013). Visible-ligth photocatalytic conversions of carbon monoxide to methane by nickel (II) oxide. Angewandte Chemie International Edition. 52(49):12983-12987. https://doi.org/10.1002/anie.201307851 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/anie.201307851 | es_ES |
dc.description.upvformatpinicio | 12983 | es_ES |
dc.description.upvformatpfin | 12987 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 52 | es_ES |
dc.description.issue | 49 | es_ES |
dc.relation.senia | 258497 | |
dc.identifier.eissn | 1521-3773 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad; European Regional Development Fund | es_ES |
dc.description.references | Dey, G. R. (2007). Chemical Reduction of CO2 to Different Products during Photo Catalytic Reaction on TiO2 under Diverse Conditions: an Overview. Journal of Natural Gas Chemistry, 16(3), 217-226. doi:10.1016/s1003-9953(07)60052-8 | es_ES |
dc.description.references | Navalón, S., Dhakshinamoorthy, A., Álvaro, M., & Garcia, H. (2013). Photocatalytic CO2Reduction using Non-Titanium Metal Oxides and Sulfides. ChemSusChem, 6(4), 562-577. doi:10.1002/cssc.201200670 | es_ES |
dc.description.references | Hwang, J.-S., Chang, J.-S., Park, S.-E., Ikeue, K., & Anpo, M. (2005). Photoreduction of Carbondioxide on Surface Functionalized Nanoporous Catalysts. Topics in Catalysis, 35(3-4), 311-319. doi:10.1007/s11244-005-3839-8 | es_ES |
dc.description.references | INOUE, T., FUJISHIMA, A., KONISHI, S., & HONDA, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698), 637-638. doi:10.1038/277637a0 | es_ES |
dc.description.references | Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J., & Šolcová, O. (2009). Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 89(3-4), 494-502. doi:10.1016/j.apcatb.2009.01.010 | es_ES |
dc.description.references | Leitner, W. (1995). Kohlendioxid als Rohstoff am Beispiel der Synthese von Ameisensäure und ihren Derivaten. Angewandte Chemie, 107(20), 2391-2405. doi:10.1002/ange.19951072005 | es_ES |
dc.description.references | Leitner, W. (1995). Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2. Angewandte Chemie International Edition in English, 34(20), 2207-2221. doi:10.1002/anie.199522071 | es_ES |
dc.description.references | RSC Adv. 2012 | es_ES |
dc.description.references | Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341-357. doi:10.1021/cr00017a016 | es_ES |
dc.description.references | Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004 | es_ES |
dc.description.references | Bahnemann, D. W. (2000). Current challenges in photocatalysis: Improved photocatalysts and appropriate photoreactor engineering. Research on Chemical Intermediates, 26(2), 207-220. doi:10.1163/156856700x00255 | es_ES |
dc.description.references | Primo, A., Corma, A., & García, H. (2011). Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys., 13(3), 886-910. doi:10.1039/c0cp00917b | es_ES |
dc.description.references | Primo, A., Marino, T., Corma, A., Molinari, R., & García, H. (2011). Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 133(18), 6930-6933. doi:10.1021/ja2011498 | es_ES |
dc.description.references | Sakthivel, S., Janczarek, M., & Kisch, H. (2004). Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2. The Journal of Physical Chemistry B, 108(50), 19384-19387. doi:10.1021/jp046857q | es_ES |
dc.description.references | Sakthivel, S., Shankar, M. ., Palanichamy, M., Arabindoo, B., Bahnemann, D. ., & Murugesan, V. (2004). Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38(13), 3001-3008. doi:10.1016/j.watres.2004.04.046 | es_ES |
dc.description.references | Gomes Silva, C., Juárez, R., Marino, T., Molinari, R., & García, H. (2011). Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 133(3), 595-602. doi:10.1021/ja1086358 | es_ES |
dc.description.references | Herrmann, J.-M. (1986). Metal-TiO2Catalysts. Strong Metal-Support Interactions, 200-211. doi:10.1021/bk-1986-0298.ch020 | es_ES |
dc.description.references | Adv. Funct. Mater. 2013 | es_ES |
dc.description.references | Dare-Edwards, M. P., Goodenough, J. B., Hamnett, A., & Nicholson, N. D. (1981). Photoelectrochemistry of nickel(II) oxide. Journal of the Chemical Society, Faraday Transactions 2, 77(4), 643. doi:10.1039/f29817700643 | es_ES |
dc.description.references | Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344. doi:10.1038/35104607 | es_ES |
dc.description.references | Xie, Y. P., Liu, G., Yin, L., & Cheng, H.-M. (2012). Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. Journal of Materials Chemistry, 22(14), 6746. doi:10.1039/c2jm16178h | es_ES |
dc.description.references | Yuliati, L., & Yoshida, H. (2008). Photocatalytic conversion of methane. Chemical Society Reviews, 37(8), 1592. doi:10.1039/b710575b | es_ES |