- -

A flexible coupling approach to multi-agent planning under incomplete information

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A flexible coupling approach to multi-agent planning under incomplete information

Mostrar el registro completo del ítem

Torreño Lerma, A.; Onaindia De La Rivaherrera, E.; Sapena Vercher, O. (2014). A flexible coupling approach to multi-agent planning under incomplete information. Knowledge and Information Systems. 38:141-178. https://doi.org/10.1007/s10115-012-0569-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47255

Ficheros en el ítem

Metadatos del ítem

Título: A flexible coupling approach to multi-agent planning under incomplete information
Autor: Torreño Lerma, Alejandro Onaindia de la Rivaherrera, Eva Sapena Vercher, Oscar
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
Multi-agent planning (MAP) approaches are typically oriented at solving loosely coupled problems, being ineffective to deal with more complex, strongly related problems. In most cases, agents work under complete information, ...[+]
Palabras clave: Planning and scheduling , Multi-agent systems
Derechos de uso: Reserva de todos los derechos
Fuente:
Knowledge and Information Systems. (issn: 0219-1377 )
DOI: 10.1007/s10115-012-0569-7
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s10115-012-0569-7
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//CSD2007-00022/ES/Agreement Technologies/ /
info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F051/ES/Advances on Agreement Technologies for Computational Entities (atforce)/
info:eu-repo/grantAgreement/MICINN//TIN2011-27652-C03-01/ES/INTERACCION MULTIAGENTE PARA PLANIFICACION/
Descripción: The final publication is available at Springer via http://dx.doi.org/10.1007/s10115-012-0569-7
Agradecimientos:
This work has been partly supported by the Spanish MICINN under projects Consolider Ingenio 2010 CSD2007-00022 and TIN2011-27652-C03-01, and the Valencian Prometeo project 2008/051.
Tipo: Artículo

References

Argente E, Botti V, Carrascosa C, Giret A, Julian V, Rebollo M (2011) An abstract architecture for virtual organizations: the THOMAS approach. Knowl Inf Syst 29(2):379–403

Barrett A, Weld DS (1994) Partial-order planning: evaluating possible efficiency gains. Artif Intell 67(1):71–112

Belesiotis A, Rovatsos M, Rahwan I (2010) Agreeing on plans through iterated disputes. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems. pp 765–772 [+]
Argente E, Botti V, Carrascosa C, Giret A, Julian V, Rebollo M (2011) An abstract architecture for virtual organizations: the THOMAS approach. Knowl Inf Syst 29(2):379–403

Barrett A, Weld DS (1994) Partial-order planning: evaluating possible efficiency gains. Artif Intell 67(1):71–112

Belesiotis A, Rovatsos M, Rahwan I (2010) Agreeing on plans through iterated disputes. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems. pp 765–772

Bellifemine F, Poggi A, Rimassa G (2001) JADE: a FIPA2000 compliant agent development environment. In: Proceedings of the 5th international conference on autonomous agents (AAMAS). ACM, pp 216–217

Blum A, Furst ML (1997) Fast planning through planning graph analysis. Artif Intell 90(1–2):281–300

Boutilier C, Brafman R (2001) Partial-order planning with concurrent interacting actions. J Artif Intell Res 14(105):136

Brafman R, Domshlak C (2008) From one to many: planning for loosely coupled multi-agent systems. In: Proceedings of the 18th international conference on automated planning and scheduling (ICAPS). pp 28–35

Brenner M, Nebel B (2009) Continual planning and acting in dynamic multiagent environments. J Auton Agents Multiag Syst 19(3):297–331

Coles A, Coles A, Fox M, Long D (2010) Forward-chaining partial-order planning. In: Proceedings of the 20th international conference on automated planning and scheduling (ICAPS). pp 42–49

Coles A, Fox M, Long D, Smith A (2008) Teaching forward-chaining planning with JavaFF. In: Colloquium on AI education, 23rd AAAI conference on artificial intelligence

Cox J, Durfee E, Bartold T (2005) A distributed framework for solving the multiagent plan coordination problem. In: Proceedings of the 4th international joint conference on autonomous agents and multiagent systems (AAMAS). ACM, pp 821–827

de Weerdt M, Clement B (2009) Introduction to planning in multiagent systems. Multiag Grid Syst 5(4):345–355

Decker K, Lesser VR (1992) Generalizing the partial global planning algorithm. Int J Coop Inf Syst 2(2):319–346

desJardins M, Durfee E, Ortiz C, Wolverton M (1999) A survey of research in distributed continual planning. AI Mag 20(4):13–22

Doshi P (2007) On the role of interactive epistemology in multiagent planning. In: Artificial intelligence and, pattern recognition. pp 208–213

Dréo J, Savéant P, Schoenauer M, Vidal V (2011) Divide-and-evolve: the marriage of descartes and darwin. In: Proceedings of the 7th international planning competition (IPC). Freiburg, Germany

Durfee EH (2001) Distributed problem solving and planning. In: Multi-agents systems and applications: selected tutorial papers from the 9th ECCAI advanced course (ACAI) and agentLink’s third European agent systems summer school (EASSS), vol LNAI 2086. Springer, pp 118–149

Durfee EH, Lesser V (1991) Partial global planning: a coordination framework for distributed hypothesis formation. IEEE Trans Syst Man Cybern Special Issue Distrib Sens Netw 21(5):1167–1183

Ephrati E, Rosenschein JS (1996) Deriving consensus in multiagent systems. Artif Intell 87(1–2):21–74

Fikes R, Nilsson N (1971) STRIPS: a new approach to the application of theorem proving to problem solving. Artif Intell 2(3):189–208

Fogués R, Alberola J, Such J, Espinosa A, Garcia-Fornes A (2010) Towards dynamic agent interaction support in open multiagent systems. In: Proceedings of the 2010 conference on artificial intelligence research and development: proceedings of the 13th international conference of the Catalan association for artificial intelligence’. IOS Press, pp 89–98

Gerevini A, Long D (2006) Preferences and soft constraints in PDDL3. In: ICAPS workshop on planning with preferences and soft constraints, vol 6. Citeseer, pp 46–53

Ghallab M, Howe A, Knoblock C, McDermott D, Ram A, Veloso M, Weld D, Wilkins D (1998) PDDL-the Planning Domain Definition Language. In: AIPS-98 planning committee

Gmytrasiewicz P, Doshi P (2005) A framework for sequential planning in multi-agent settings. J Artif Intell Res 24:49–79

Haslum P, Jonsson P (1999) Some results on the complexity of planning with incomplete information. In: Proceedings of the 5th European conference on, planning (ECP). pp 308–318

Helmert M (2006) The fast downward planning system. J Artif Intell Res 26(1):191–246

Hoffmann J, Nebel B (2001) The FF planning system: fast planning generation through heuristic search. J Artif Intell Res 14:253–302

Jonsson A, Rovatsos M (2011) Scaling up multiagent planning: a best-response approach. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 114–121

Kambhampati S (1997) Refinement planning as a unifying framework for plan synthesis. AI Mag 18(2):67–97

Kaminka GA, Pynadath DV, Tambe M (2002) Monitoring teams by overhearing: a multi-agent plan-recognition approach. J Artif Intell Res 17:83–135

Kone M, Shimazu A, Nakajima T (2000) The state of the art in agent communication languages. Knowl Inf Syst 2(3):259–284

Kovacs DL (2011) Complete BNF description of PDDL3.1. Technical report

Kraus S (1997) Beliefs, time and incomplete information in multiple encounter negotiations among autonomous agents. Ann Math Artif Intell 20(1–4):111–159

Kumar A, Zilberstein S, Toussaint M (2011) Scalable multiagent planning using probabilistic inference. In: Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI)’. Barcelona, Spain, pp 2140–2146

Kvarnström J. (2011) Planning for loosely coupled agents using partial order forward-chaining. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 138–145

Lesser V, Decker K, Wagner T, Carver N, Garvey A, Horling B, Neiman D, Podorozhny R, Prasad M, Raja A et al (2004) Evolution of the GPGP/TAEMS domain-independent coordination framework. Auton Agents Multi Agent Syst 9(1):87–143

Lipovetzky N, Geffner H (2011) Searching for plans with carefully designed probes. In: Proceedings of the 21th international conference on automated planning and scheduling (ICAPS)

Micacchi C, Cohen R (2008) A framework for simulating real-time multi-agent systems. Knowl Inf Syst 17(2):135–166

Nguyen N, Katarzyniak R (2009) Actions and social interactions in multi-agent systems. Knowl Inf Syst 18(2):133–136

Nguyen X, Kambhampati S (2001) Reviving partial order planning. In: Proceedings of the 17th international joint conference on artificial intelligence (IJCAI). Morgan Kaufmann, pp 459–464

Nissim R, Brafman R, Domshlak C (2010) A general, fully distributed multi-agent planning algorithm. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS). pp 1323–1330

Pajares S, Onaindia E (2012) Defeasible argumentation for multi-agent planning in ambient intelligence applications. In: Proceedings of the 11th international conference on autonomous agents and multiagent systems (AAMAS) pp 509–516

Paolucci M, Shehory O, Sycara K, Kalp D, Pannu A (2000) A planning component for RETSINA agents. Intelligent Agents VI. Agent Theories Architectures, and Languages pp 147–161

Parsons S, Sierra C, Jennings N (1998) Agents that reason and negotiate by arguing. J Logic Comput 8(3):261

Penberthy J, Weld D (1992) UCPOP: a sound, complete, partial order planner for ADL. In: Proceedings of the 3rd international conference on principles of knowledge representation and reasoning (KR). Morgan Kaufmann, pp 103–114

Richter S, Westphal M (2010) The LAMA planner: guiding cost-based anytime planning with landmarks. J Artif Intell Res 39(1):127–177

Sycara K, Pannu A (1998) The RETSINA multiagent system (video session): towards integrating planning, execution and information gathering. In: Proceedings of the 2nd international conference on autonomous agents (Agents). ACM, pp 350–351

Tambe M (1997) Towards flexible teamwork. J Artif Intell Res 7:83–124

Tang Y, Norman T, Parsons S (2010) A model for integrating dialogue and the execution of joint plans. Argumentation in multi-agent systems, pp 60–78

Tonino H, Bos A, de Weerdt M, Witteveen C (2002) Plan coordination by revision in collective agent based systems. Artif Intell 142(2):121–145

Van Der Krogt R, De Weerdt M (2005), Plan repair as an extension of planning. In: Proceedings of the 15th international conference on automated planning and scheduling (ICAPS). pp 161–170

Weld D (1994) An introduction to least commitment planning. AI Mag 15(4):27

Weld D (1999) Recent advances in AI planning. AI Mag 20(2):93–123

Wilkins D, Myers K (1998) A multiagent planning architecture. In: Proceedings of the 4th international conference on artificial intelligence planning systems (AIPS), pp 154–162

Wu F, Zilberstein S, Chen X (2011) Online planning for multi-agent systems with bounded communication. Artif Intell 175(2):487–511

Younes H, Simmons R (2003) VHPOP: versatile heuristic partial order planner. J Artif Intell Res 20: 405–430

Zhang J, Nguyen X, Kowalczyk R (2007) Graph-based multi-agent replanning algorithm. In: Proceedings of the 6th conference on autonomous agents and multiagent systems (AAMAS)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem