- -

A flexible coupling approach to multi-agent planning under incomplete information

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A flexible coupling approach to multi-agent planning under incomplete information

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torreño Lerma, Alejandro es_ES
dc.contributor.author Onaindia de la Rivaherrera, Eva es_ES
dc.contributor.author Sapena Vercher, Oscar es_ES
dc.date.accessioned 2015-02-18T10:00:16Z
dc.date.available 2015-02-18T10:00:16Z
dc.date.issued 2014-01
dc.identifier.issn 0219-1377
dc.identifier.uri http://hdl.handle.net/10251/47255
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s10115-012-0569-7 es_ES
dc.description.abstract Multi-agent planning (MAP) approaches are typically oriented at solving loosely coupled problems, being ineffective to deal with more complex, strongly related problems. In most cases, agents work under complete information, building complete knowledge bases. The present article introduces a general-purpose MAP framework designed to tackle problems of any coupling levels under incomplete information. Agents in our MAP model are partially unaware of the information managed by the rest of agents and share only the critical information that affects other agents, thus maintaining a distributed vision of the task. Agents solve MAP tasks through the adoption of an iterative refinement planning procedure that uses single-agent planning technology. In particular, agents will devise refinements through the partial-order planning paradigm, a flexible framework to build refinement plans leaving unsolved details that will be gradually completed by means of new refinements. Our proposal is supported with the implementation of a fully operative MAP system and we show various experiments when running our system over different types of MAP problems, from the most strongly related to the most loosely coupled. es_ES
dc.description.sponsorship This work has been partly supported by the Spanish MICINN under projects Consolider Ingenio 2010 CSD2007-00022 and TIN2011-27652-C03-01, and the Valencian Prometeo project 2008/051. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Knowledge and Information Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Planning and scheduling es_ES
dc.subject Multi-agent systems es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A flexible coupling approach to multi-agent planning under incomplete information es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10115-012-0569-7
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00022/ES/Agreement Technologies/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F051/ES/Advances on Agreement Technologies for Computational Entities (atforce)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2011-27652-C03-01/ES/INTERACCION MULTIAGENTE PARA PLANIFICACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Torreño Lerma, A.; Onaindia De La Rivaherrera, E.; Sapena Vercher, O. (2014). A flexible coupling approach to multi-agent planning under incomplete information. Knowledge and Information Systems. 38:141-178. https://doi.org/10.1007/s10115-012-0569-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10115-012-0569-7 es_ES
dc.description.upvformatpinicio 141 es_ES
dc.description.upvformatpfin 178 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.relation.senia 278105
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Argente E, Botti V, Carrascosa C, Giret A, Julian V, Rebollo M (2011) An abstract architecture for virtual organizations: the THOMAS approach. Knowl Inf Syst 29(2):379–403 es_ES
dc.description.references Barrett A, Weld DS (1994) Partial-order planning: evaluating possible efficiency gains. Artif Intell 67(1):71–112 es_ES
dc.description.references Belesiotis A, Rovatsos M, Rahwan I (2010) Agreeing on plans through iterated disputes. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems. pp 765–772 es_ES
dc.description.references Bellifemine F, Poggi A, Rimassa G (2001) JADE: a FIPA2000 compliant agent development environment. In: Proceedings of the 5th international conference on autonomous agents (AAMAS). ACM, pp 216–217 es_ES
dc.description.references Blum A, Furst ML (1997) Fast planning through planning graph analysis. Artif Intell 90(1–2):281–300 es_ES
dc.description.references Boutilier C, Brafman R (2001) Partial-order planning with concurrent interacting actions. J Artif Intell Res 14(105):136 es_ES
dc.description.references Brafman R, Domshlak C (2008) From one to many: planning for loosely coupled multi-agent systems. In: Proceedings of the 18th international conference on automated planning and scheduling (ICAPS). pp 28–35 es_ES
dc.description.references Brenner M, Nebel B (2009) Continual planning and acting in dynamic multiagent environments. J Auton Agents Multiag Syst 19(3):297–331 es_ES
dc.description.references Coles A, Coles A, Fox M, Long D (2010) Forward-chaining partial-order planning. In: Proceedings of the 20th international conference on automated planning and scheduling (ICAPS). pp 42–49 es_ES
dc.description.references Coles A, Fox M, Long D, Smith A (2008) Teaching forward-chaining planning with JavaFF. In: Colloquium on AI education, 23rd AAAI conference on artificial intelligence es_ES
dc.description.references Cox J, Durfee E, Bartold T (2005) A distributed framework for solving the multiagent plan coordination problem. In: Proceedings of the 4th international joint conference on autonomous agents and multiagent systems (AAMAS). ACM, pp 821–827 es_ES
dc.description.references de Weerdt M, Clement B (2009) Introduction to planning in multiagent systems. Multiag Grid Syst 5(4):345–355 es_ES
dc.description.references Decker K, Lesser VR (1992) Generalizing the partial global planning algorithm. Int J Coop Inf Syst 2(2):319–346 es_ES
dc.description.references desJardins M, Durfee E, Ortiz C, Wolverton M (1999) A survey of research in distributed continual planning. AI Mag 20(4):13–22 es_ES
dc.description.references Doshi P (2007) On the role of interactive epistemology in multiagent planning. In: Artificial intelligence and, pattern recognition. pp 208–213 es_ES
dc.description.references Dréo J, Savéant P, Schoenauer M, Vidal V (2011) Divide-and-evolve: the marriage of descartes and darwin. In: Proceedings of the 7th international planning competition (IPC). Freiburg, Germany es_ES
dc.description.references Durfee EH (2001) Distributed problem solving and planning. In: Multi-agents systems and applications: selected tutorial papers from the 9th ECCAI advanced course (ACAI) and agentLink’s third European agent systems summer school (EASSS), vol LNAI 2086. Springer, pp 118–149 es_ES
dc.description.references Durfee EH, Lesser V (1991) Partial global planning: a coordination framework for distributed hypothesis formation. IEEE Trans Syst Man Cybern Special Issue Distrib Sens Netw 21(5):1167–1183 es_ES
dc.description.references Ephrati E, Rosenschein JS (1996) Deriving consensus in multiagent systems. Artif Intell 87(1–2):21–74 es_ES
dc.description.references Fikes R, Nilsson N (1971) STRIPS: a new approach to the application of theorem proving to problem solving. Artif Intell 2(3):189–208 es_ES
dc.description.references Fogués R, Alberola J, Such J, Espinosa A, Garcia-Fornes A (2010) Towards dynamic agent interaction support in open multiagent systems. In: Proceedings of the 2010 conference on artificial intelligence research and development: proceedings of the 13th international conference of the Catalan association for artificial intelligence’. IOS Press, pp 89–98 es_ES
dc.description.references Gerevini A, Long D (2006) Preferences and soft constraints in PDDL3. In: ICAPS workshop on planning with preferences and soft constraints, vol 6. Citeseer, pp 46–53 es_ES
dc.description.references Ghallab M, Howe A, Knoblock C, McDermott D, Ram A, Veloso M, Weld D, Wilkins D (1998) PDDL-the Planning Domain Definition Language. In: AIPS-98 planning committee es_ES
dc.description.references Gmytrasiewicz P, Doshi P (2005) A framework for sequential planning in multi-agent settings. J Artif Intell Res 24:49–79 es_ES
dc.description.references Haslum P, Jonsson P (1999) Some results on the complexity of planning with incomplete information. In: Proceedings of the 5th European conference on, planning (ECP). pp 308–318 es_ES
dc.description.references Helmert M (2006) The fast downward planning system. J Artif Intell Res 26(1):191–246 es_ES
dc.description.references Hoffmann J, Nebel B (2001) The FF planning system: fast planning generation through heuristic search. J Artif Intell Res 14:253–302 es_ES
dc.description.references Jonsson A, Rovatsos M (2011) Scaling up multiagent planning: a best-response approach. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 114–121 es_ES
dc.description.references Kambhampati S (1997) Refinement planning as a unifying framework for plan synthesis. AI Mag 18(2):67–97 es_ES
dc.description.references Kaminka GA, Pynadath DV, Tambe M (2002) Monitoring teams by overhearing: a multi-agent plan-recognition approach. J Artif Intell Res 17:83–135 es_ES
dc.description.references Kone M, Shimazu A, Nakajima T (2000) The state of the art in agent communication languages. Knowl Inf Syst 2(3):259–284 es_ES
dc.description.references Kovacs DL (2011) Complete BNF description of PDDL3.1. Technical report es_ES
dc.description.references Kraus S (1997) Beliefs, time and incomplete information in multiple encounter negotiations among autonomous agents. Ann Math Artif Intell 20(1–4):111–159 es_ES
dc.description.references Kumar A, Zilberstein S, Toussaint M (2011) Scalable multiagent planning using probabilistic inference. In: Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI)’. Barcelona, Spain, pp 2140–2146 es_ES
dc.description.references Kvarnström J. (2011) Planning for loosely coupled agents using partial order forward-chaining. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 138–145 es_ES
dc.description.references Lesser V, Decker K, Wagner T, Carver N, Garvey A, Horling B, Neiman D, Podorozhny R, Prasad M, Raja A et al (2004) Evolution of the GPGP/TAEMS domain-independent coordination framework. Auton Agents Multi Agent Syst 9(1):87–143 es_ES
dc.description.references Lipovetzky N, Geffner H (2011) Searching for plans with carefully designed probes. In: Proceedings of the 21th international conference on automated planning and scheduling (ICAPS) es_ES
dc.description.references Micacchi C, Cohen R (2008) A framework for simulating real-time multi-agent systems. Knowl Inf Syst 17(2):135–166 es_ES
dc.description.references Nguyen N, Katarzyniak R (2009) Actions and social interactions in multi-agent systems. Knowl Inf Syst 18(2):133–136 es_ES
dc.description.references Nguyen X, Kambhampati S (2001) Reviving partial order planning. In: Proceedings of the 17th international joint conference on artificial intelligence (IJCAI). Morgan Kaufmann, pp 459–464 es_ES
dc.description.references Nissim R, Brafman R, Domshlak C (2010) A general, fully distributed multi-agent planning algorithm. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS). pp 1323–1330 es_ES
dc.description.references Pajares S, Onaindia E (2012) Defeasible argumentation for multi-agent planning in ambient intelligence applications. In: Proceedings of the 11th international conference on autonomous agents and multiagent systems (AAMAS) pp 509–516 es_ES
dc.description.references Paolucci M, Shehory O, Sycara K, Kalp D, Pannu A (2000) A planning component for RETSINA agents. Intelligent Agents VI. Agent Theories Architectures, and Languages pp 147–161 es_ES
dc.description.references Parsons S, Sierra C, Jennings N (1998) Agents that reason and negotiate by arguing. J Logic Comput 8(3):261 es_ES
dc.description.references Penberthy J, Weld D (1992) UCPOP: a sound, complete, partial order planner for ADL. In: Proceedings of the 3rd international conference on principles of knowledge representation and reasoning (KR). Morgan Kaufmann, pp 103–114 es_ES
dc.description.references Richter S, Westphal M (2010) The LAMA planner: guiding cost-based anytime planning with landmarks. J Artif Intell Res 39(1):127–177 es_ES
dc.description.references Sycara K, Pannu A (1998) The RETSINA multiagent system (video session): towards integrating planning, execution and information gathering. In: Proceedings of the 2nd international conference on autonomous agents (Agents). ACM, pp 350–351 es_ES
dc.description.references Tambe M (1997) Towards flexible teamwork. J Artif Intell Res 7:83–124 es_ES
dc.description.references Tang Y, Norman T, Parsons S (2010) A model for integrating dialogue and the execution of joint plans. Argumentation in multi-agent systems, pp 60–78 es_ES
dc.description.references Tonino H, Bos A, de Weerdt M, Witteveen C (2002) Plan coordination by revision in collective agent based systems. Artif Intell 142(2):121–145 es_ES
dc.description.references Van Der Krogt R, De Weerdt M (2005), Plan repair as an extension of planning. In: Proceedings of the 15th international conference on automated planning and scheduling (ICAPS). pp 161–170 es_ES
dc.description.references Weld D (1994) An introduction to least commitment planning. AI Mag 15(4):27 es_ES
dc.description.references Weld D (1999) Recent advances in AI planning. AI Mag 20(2):93–123 es_ES
dc.description.references Wilkins D, Myers K (1998) A multiagent planning architecture. In: Proceedings of the 4th international conference on artificial intelligence planning systems (AIPS), pp 154–162 es_ES
dc.description.references Wu F, Zilberstein S, Chen X (2011) Online planning for multi-agent systems with bounded communication. Artif Intell 175(2):487–511 es_ES
dc.description.references Younes H, Simmons R (2003) VHPOP: versatile heuristic partial order planner. J Artif Intell Res 20: 405–430 es_ES
dc.description.references Zhang J, Nguyen X, Kowalczyk R (2007) Graph-based multi-agent replanning algorithm. In: Proceedings of the 6th conference on autonomous agents and multiagent systems (AAMAS) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem