Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández Crespo, Carmen | es_ES |
dc.contributor.author | Martín Monerris, Miguel | es_ES |
dc.contributor.author | Ferris Juan, Mariano | es_ES |
dc.contributor.author | Oñate Ema, Margarita | es_ES |
dc.date.accessioned | 2015-02-20T17:53:43Z | |
dc.date.available | 2015-02-20T17:53:43Z | |
dc.date.issued | 2012-03 | |
dc.identifier.issn | 1532-0383 | |
dc.identifier.uri | http://hdl.handle.net/10251/47365 | |
dc.description.abstract | Lake Albufera (Valencia, Spain) is part of a legally protected wetland of international importance. However, it has deteriorated as a result of urban, industrial, and farming pollution. It is highly eutrophic, and its sediment contains persistent pollutants, such as heavy metals. In anoxic sediments, sulphides represent an important binding phase for heavy metals. In this study, acid volatile sulphide (AVS) and simultaneously extracted metals (SEM) were analyzed in surface sediment extracted from Lake Albufera; organic matter and total metals were also analyzed. Twelve sites were sampled in each of three sampling campaigns conducted in March and September 2007 and September 2008. The results revealed elevated organic matter contents varying between 6.9 and 16.7%. The concentrations of AVS in the lake were high, ranging from 8.5 to 48.5 ¿mol/g; the lowest concentrations were found in the central sites. The AVS results displayed significant differences between the samples from the winter and summer of 2007 (p < 0.05) but not between the two summer samples. The results obtained for SEM varied from 1.4 to 4.8 ¿mol/g. The difference SEM-AVS was less than zero for all sampling locations and campaigns, indicating the existence of a sulphide pool able to bind metals. © 2012 Copyright Taylor and Francis Group, LLC. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Taylor &amp; Francis: STM, Behavioural Science and Public Health Titles | es_ES |
dc.relation.ispartof | Soil and Sediment Contamination | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Albufera | es_ES |
dc.subject | AVS | es_ES |
dc.subject | Heavy metals | es_ES |
dc.subject | Sediment | es_ES |
dc.subject | SEM | es_ES |
dc.subject | Acid volatile sulphide | es_ES |
dc.subject | Binding phase | es_ES |
dc.subject | Organic matter content | es_ES |
dc.subject | Protected wetlands | es_ES |
dc.subject | Sampling campaigns | es_ES |
dc.subject | Sampling location | es_ES |
dc.subject | Simultaneously extracted metals | es_ES |
dc.subject | Surface sediments | es_ES |
dc.subject | Valencia | es_ES |
dc.subject | Anoxic sediments | es_ES |
dc.subject | Biogeochemistry | es_ES |
dc.subject | Biological materials | es_ES |
dc.subject | Lakes | es_ES |
dc.subject | Organic compounds | es_ES |
dc.subject | Pollution | es_ES |
dc.subject | Scanning electron microscopy | es_ES |
dc.subject | Sedimentology | es_ES |
dc.subject | Sediments | es_ES |
dc.subject | Lake pollution | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Measurement of Acid Volatile Sulphide and Simultaneously Extracted Metals in Sediment from Lake Albufera (Valencia, Spain) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/15320383.2012.649374 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Hernández Crespo, C.; Martín Monerris, M.; Ferris Juan, M.; Oñate Ema, M. (2012). Measurement of Acid Volatile Sulphide and Simultaneously Extracted Metals in Sediment from Lake Albufera (Valencia, Spain). Soil and Sediment Contamination. 21(2):176-191. doi:10.1080/15320383.2012.649374 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/15320383.2012.649374 | es_ES |
dc.description.upvformatpinicio | 176 | es_ES |
dc.description.upvformatpfin | 191 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 207934 | |
dc.description.references | Allen, H. E., Fu, G., & Deng, B. (1993). Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environmental Toxicology and Chemistry, 12(8), 1441-1453. doi:10.1002/etc.5620120812 | es_ES |
dc.description.references | Besser, J. M., Brumbaugh, W. G., Ivey, C. D., Ingersoll, C. G., & Moran, P. W. (2007). Biological and Chemical Characterization of Metal Bioavailability in Sediments from Lake Roosevelt, Columbia River, Washington, USA. Archives of Environmental Contamination and Toxicology, 54(4), 557-570. doi:10.1007/s00244-007-9074-5 | es_ES |
dc.description.references | Burton, G. A., Green, A., Baudo, R., Forbes, V., Nguyen, L. T. H., Janssen, C. R., … Dunning, J. (2007). CHARACTERIZING SEDIMENT ACID VOLATILE SULFIDE CONCENTRATIONS IN EUROPEAN STREAMS. Environmental Toxicology and Chemistry, 26(1), 1. doi:10.1897/05-708r.1 | es_ES |
dc.description.references | Casado-Martínez, M. C., Buceta, J. L., Belzunce, M. J., & DelValls, T. A. (2006). Using sediment quality guidelines for dredged material management in commercial ports from Spain. Environment International, 32(3), 388-396. doi:10.1016/j.envint.2005.09.003 | es_ES |
dc.description.references | Choi, J. H., Park, S. S., & Jaffé, P. R. (2006). Simulating the dynamics of sulfur species and zinc in wetland sediments. Ecological Modelling, 199(3), 315-323. doi:10.1016/j.ecolmodel.2006.05.009 | es_ES |
dc.description.references | De Jonge, M., Blust, R., & Bervoets, L. (2010). The relation between Acid Volatile Sulfides (AVS) and metal accumulation in aquatic invertebrates: Implications of feeding behavior and ecology. Environmental Pollution, 158(5), 1381-1391. doi:10.1016/j.envpol.2010.01.001 | es_ES |
dc.description.references | De Lange, H. J., Van Griethuysen, C., & Koelmans, A. A. (2008). Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses. Environmental Pollution, 151(1), 243-251. doi:10.1016/j.envpol.2007.01.052 | es_ES |
dc.description.references | Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Carlson, A. R., & Ankley, G. T. (1992). Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science & Technology, 26(1), 96-101. doi:10.1021/es00025a009 | es_ES |
dc.description.references | Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of The Total Environment, 407(13), 3972-3985. doi:10.1016/j.scitotenv.2008.07.025 | es_ES |
dc.description.references | European Union. 2000. “Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy”. EU Water Framework Directive. OJ L 327 on 22 December 2000 | es_ES |
dc.description.references | Fang, T., Li, X., & Zhang, G. (2005). Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 61(3), 420-431. doi:10.1016/j.ecoenv.2004.10.004 | es_ES |
dc.description.references | Grabowski, L. A., Houpis, J. L. J., Woods, W. I., & Johnson, K. A. (2001). Seasonal bioavailability of sediment-associated heavy metals along the Mississippi river floodplain. Chemosphere, 45(4-5), 643-651. doi:10.1016/s0045-6535(01)00037-6 | es_ES |
dc.description.references | Hernández-Crespo, C., Martín, M., Ferrís, M., Oñate, M. and Torán, M. 2010. “Spatial variation of Acid Volatile Sulfide (AVS) and Simultaneously Extracted Metals (SEM) in sediments from Beniarrés, Amadorio and Guadalest reservoirs (Alicante, Spain)”. Seville, Spain: 20th SETAC Europe Annual Meeting. Science and Technology for Environmental Protection. | es_ES |
dc.description.references | Jingchun, L., Chongling, Y., Spencer, K. L., Ruifeng, Z., & Haoliang, L. (2010). The distribution of acid-volatile sulfide and simultaneously extracted metals in sediments from a mangrove forest and adjacent mudflat in Zhangjiang Estuary, China. Marine Pollution Bulletin, 60(8), 1209-1216. doi:10.1016/j.marpolbul.2010.03.029 | es_ES |
dc.description.references | Lee, J., Lee, B., Yoo, H., Koh, C., & Luoma, S. (2001). Influence of reactive sulfide (AVS) and supplementary food on Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata. Marine Ecology Progress Series, 216, 129-140. doi:10.3354/meps216129 | es_ES |
dc.description.references | Lee, J.-S., Lee, B.-G., Luoma, S. N., & Yoo, H. (2004). IMPORTANCE OF EQUILIBRATION TIME IN THE PARTITIONING AND TOXICITY OF ZINC IN SPIKED SEDIMENT BIOASSAYS. Environmental Toxicology and Chemistry, 23(1), 65. doi:10.1897/03-176 | es_ES |
dc.description.references | Leonard, E. N., Mattson, V. R., Benoit, D. A., Hoke, R. A., & Ankley, G. T. (1993). Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeastern Minnesota lakes. Hydrobiologia, 271(2), 87-95. doi:10.1007/bf00007545 | es_ES |
dc.description.references | Longhi, D., Bartoli, M., & Viaroli, P. (2008). Decomposition of four macrophytes in wetland sediments: Organic matter and nutrient decay and associated benthic processes. Aquatic Botany, 89(3), 303-310. doi:10.1016/j.aquabot.2008.03.004 | es_ES |
dc.description.references | Peng, S.-H., Wang, W.-X., Li, X., & Yen, Y.-F. (2004). Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches. Chemosphere, 57(8), 839-851. doi:10.1016/j.chemosphere.2004.07.015 | es_ES |
dc.description.references | Peris, E. 1999. “Caracterización de los materiales de fondo del lago de la Albufera evaluación del nivel de aterramiento y caracterización mineralógica de los materiales así como de la carga contaminante persistente residente en el lago”. Departamento de Ingeniería de la Construcción, Universidad Politécnica de Valencia. | es_ES |
dc.description.references | Public database of Condederación Hidrográfica del Júcar. 2011. Available at:http://www.chj.gob.es/Redesdecalidad/red_ica.aspx | es_ES |
dc.description.references | Speelmans, M., Lock, K., Vanthuyne, D. R. J., Hendrickx, F., Du Laing, G., Tack, F. M. G., & Janssen, C. R. (2010). Hydrological regime and salinity alter the bioavailability of Cu and Zn in wetlands. Environmental Pollution, 158(5), 1870-1875. doi:10.1016/j.envpol.2009.10.040 | es_ES |
dc.description.references | Técnica y and Proyectos S. A. (TYPSA). 2004. “Estudio para el desarrollo sostenible de l’ Albufera de Valencia”. Confederación Hidrográfica del Júcar, Ministerio de Medio Ambiente. | es_ES |
dc.description.references | UNE. 77322:2003—Calidad del suelo. Extracción de elementos traza solubles en agua regia (ISO 11466:1995) AENOR, Madrid, Spain. 2003 | es_ES |
dc.description.references | U.S. EPA. 2005. “Procedures for the derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the protection of benthic organisms: Metal mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc). EPA-600-R-02-011”. Washington, DC, USA: Office of Research and Development. | es_ES |
dc.description.references | Van Griethuysen, C., de Lange, H. J., van den Heuij, M., de Bies, S. C., Gillissen, F., & Koelmans, A. A. (2006). Temporal dynamics of AVS and SEM in sediment of shallow freshwater floodplain lakes. Applied Geochemistry, 21(4), 632-642. doi:10.1016/j.apgeochem.2005.12.010 | es_ES |
dc.description.references | Zheng, L., Xu, X. Q., & Xie, P. (2004). Seasonal and Vertical Distributions of Acid Volatile Sulfide and Metal Bioavailability in a Shallow, Subtropical Lake in China. Bulletin of Environmental Contamination and Toxicology, 72(2), 326-334. doi:10.1007/s00128-003-9000-0 | es_ES |