- -

Efficient finite element methodology based on cartesian grids: application to structural shape optimization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient finite element methodology based on cartesian grids: application to structural shape optimization

Mostrar el registro completo del ítem

Nadal, E.; Ródenas, J.; Albelda Vitoria, J.; Tur Valiente, M.; Tarancón Caro, JE.; Fuenmayor Fernández, FJ. (2013). Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstract and Applied Analysis. 2013:1-19. https://doi.org/10.1155/2013/953786

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47650

Ficheros en el ítem

Metadatos del ítem

Título: Efficient finite element methodology based on cartesian grids: application to structural shape optimization
Autor: Nadal, E. Ródenas, J.J. Albelda Vitoria, José Tur Valiente, Manuel Tarancón Caro, José Enrique Fuenmayor Fernández, Francisco Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
This work presents an analysis methodology based on the use of the Finite Element Method (FEM) nowadays considered one of the main numerical tools for solving Boundary Value Problems (BVPs). The proposed methodology, ...[+]
Palabras clave: SUPERCONVERGENT PATCH RECOVERY , ACOUSTIC SCATTERING , DOMAIN DECOMPOSITION METHOD , SIMPLE ERROR ESTIMATOR , CRACK-GROWTH , MULTIPOINT CONSTRAINTS , BOUNDARY-CONDITIONS , PART I , APPROXIMATION , EQUILIBRIUM
Derechos de uso: Reconocimiento (by)
Fuente:
Abstract and Applied Analysis. (issn: 1085-3375 ) (eissn: 1687-0409 )
DOI: 10.1155/2013/953786
Editorial:
Hindawi Publishing Corporation
Versión del editor: http://dx.doi.org/10.1155/2013/953786
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2010-20542/ES/DESARROLLO DE HERRAMIENTA 3D COMPUTACIONALMENTE EFICAZ Y DE ALTA PRECISION PARA ANALISIS Y DISEÑO ESTRUCTURAL BASADA EN MALLADOS CARTESIANOS DE EF INDEPENDIENTES DE GEOMETRIA/
info:eu-repo/grantAgreement/EC/FP7/289361/EU/Integrating Numerical Simulation and Geometric Design Technology/
info:eu-repo/grantAgreement/MICINN//AP2008-01086/ES/AP2008-01086/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/
Agradecimientos:
This work has been developed within the framework of research project DPI2010-20542 of the Ministerio de Economia y Competitividad (Spain). The financial support of the FPU program (AP2008-01086), the funding from Universitat ...[+]
Tipo: Artículo

References

Moés, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Sukumar, N., & Prévost, J.-H. (2003). Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation. International Journal of Solids and Structures, 40(26), 7513-7537. doi:10.1016/j.ijsolstr.2003.08.002

Strouboulis, T., Copps, K., & Babuška, I. (2001). The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 190(32-33), 4081-4193. doi:10.1016/s0045-7825(01)00188-8 [+]
Moés, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Sukumar, N., & Prévost, J.-H. (2003). Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation. International Journal of Solids and Structures, 40(26), 7513-7537. doi:10.1016/j.ijsolstr.2003.08.002

Strouboulis, T., Copps, K., & Babuška, I. (2001). The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 190(32-33), 4081-4193. doi:10.1016/s0045-7825(01)00188-8

Strouboulis, T., Zhang, L., & Babuška, I. (2006). Assessment of the cost and accuracy of the generalized FEM. International Journal for Numerical Methods in Engineering, 69(2), 250-283. doi:10.1002/nme.1750

Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4), 289-314. doi:10.1016/s0045-7825(96)01087-0

Stolarska, M., Chopp, D. L., Moës, N., & Belytschko, T. (2001). Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 51(8), 943-960. doi:10.1002/nme.201

Moumnassi, M., Belouettar, S., Béchet, É., Bordas, S. P. A., Quoirin, D., & Potier-Ferry, M. (2011). Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces. Computer Methods in Applied Mechanics and Engineering, 200(5-8), 774-796. doi:10.1016/j.cma.2010.10.002

Legrain, G., Chevaugeon, N., & Dréau, K. (2012). High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation. Computer Methods in Applied Mechanics and Engineering, 241-244, 172-189. doi:10.1016/j.cma.2012.06.001

Burman, E., & Hansbo, P. (2010). Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering, 199(41-44), 2680-2686. doi:10.1016/j.cma.2010.05.011

HEIKKOLA, E., KUZNETSOV, Y. A., & LIPNIKOV, K. N. (1999). FICTITIOUS DOMAIN METHODS FOR THE NUMERICAL SOLUTION OF THREE-DIMENSIONAL ACOUSTIC SCATTERING PROBLEMS. Journal of Computational Acoustics, 07(03), 161-183. doi:10.1142/s0218396x99000126

Hetmaniuk, U., & Farhat, C. (2003). A finite element-based fictitious domain decomposition method for the fast solution of partially axisymmetric sound-hard acoustic scattering problems. Finite Elements in Analysis and Design, 39(8), 707-725. doi:10.1016/s0168-874x(03)00055-6

Farhat, C., & Hetmaniuk, U. (2002). A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part I: Dirichlet boundary conditions. International Journal for Numerical Methods in Engineering, 54(9), 1309-1332. doi:10.1002/nme.461

Ye, T., Mittal, R., Udaykumar, H. S., & Shyy, W. (1999). An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries. Journal of Computational Physics, 156(2), 209-240. doi:10.1006/jcph.1999.6356

Jahangirian, A., & Shoraka, Y. (2008). Adaptive unstructured grid generation for engineering computation of aerodynamic flows. Mathematics and Computers in Simulation, 78(5-6), 627-644. doi:10.1016/j.matcom.2008.04.004

Silva Santos, C. M., & Greaves, D. M. (2007). Using hierarchical Cartesian grids with multigrid acceleration. International Journal for Numerical Methods in Engineering, 69(8), 1755-1774. doi:10.1002/nme.1844

Jang, G.-W., Kim, Y. Y., & Choi, K. K. (2004). Remesh-free shape optimization using the wavelet-Galerkin method. International Journal of Solids and Structures, 41(22-23), 6465-6483. doi:10.1016/j.ijsolstr.2004.05.010

Mäkinen, R. A. E., Rossi, T., & Toivanen, J. (2000). A moving mesh fictitious domain approach for shape optimization problems. ESAIM: Mathematical Modelling and Numerical Analysis, 34(1), 31-45. doi:10.1051/m2an:2000129

Victoria, M., Querin, O. M., & Martí, P. (2010). Topology design for multiple loading conditions of continuum structures using isolines and isosurfaces. Finite Elements in Analysis and Design, 46(3), 229-237. doi:10.1016/j.finel.2009.09.003

Parussini, L., & Pediroda, V. (2009). Fictitious Domain approach with hp-finite element approximation for incompressible fluid flow. Journal of Computational Physics, 228(10), 3891-3910. doi:10.1016/j.jcp.2009.02.019

Bishop, J. (2003). Rapid stress analysis of geometrically complex domains using implicit meshing. Computational Mechanics, 30(5-6), 460-478. doi:10.1007/s00466-003-0424-5

Zhang, L., Gerstenberger, A., Wang, X., & Liu, W. K. (2004). Immersed finite element method. Computer Methods in Applied Mechanics and Engineering, 193(21-22), 2051-2067. doi:10.1016/j.cma.2003.12.044

Roma, A. M., Peskin, C. S., & Berger, M. J. (1999). An Adaptive Version of the Immersed Boundary Method. Journal of Computational Physics, 153(2), 509-534. doi:10.1006/jcph.1999.6293

García‐Ruíz, M. J., & Steven, G. P. (1999). Fixed grid finite elements in elasticity problems. Engineering Computations, 16(2), 145-164. doi:10.1108/02644409910257430

Daneshmand, F., & Kazemzadeh-Parsi, M. J. (2009). Static and dynamic analysis of 2D and 3D elastic solids using the modified FGFEM. Finite Elements in Analysis and Design, 45(11), 755-765. doi:10.1016/j.finel.2009.06.003

Bordas, S. P. A., Rabczuk, T., Hung, N.-X., Nguyen, V. P., Natarajan, S., Bog, T., … Hiep, N. V. (2010). Strain smoothing in FEM and XFEM. Computers & Structures, 88(23-24), 1419-1443. doi:10.1016/j.compstruc.2008.07.006

Simpson, R. N., Bordas, S. P. A., Trevelyan, J., & Rabczuk, T. (2012). A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 209-212, 87-100. doi:10.1016/j.cma.2011.08.008

Scott, M. A., Simpson, R. N., Evans, J. A., Lipton, S., Bordas, S. P. A., Hughes, T. J. R., & Sederberg, T. W. (2013). Isogeometric boundary element analysis using unstructured T-splines. Computer Methods in Applied Mechanics and Engineering, 254, 197-221. doi:10.1016/j.cma.2012.11.001

Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39-41), 4135-4195. doi:10.1016/j.cma.2004.10.008

Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206

Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702

Wiberg, N.-E., Abdulwahab, F., & Ziukas, S. (1994). Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. International Journal for Numerical Methods in Engineering, 37(20), 3417-3440. doi:10.1002/nme.1620372003

Blacker, T., & Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. International Journal for Numerical Methods in Engineering, 37(3), 517-536. doi:10.1002/nme.1620370309

Ramsay, A. C. A., & Maunder, E. A. W. (1996). Effective error sttimation from continous, boundary admissible estimated stress fields. Computers & Structures, 61(2), 331-343. doi:10.1016/0045-7949(96)00034-x

Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903

Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837

Ródenas, J. J., González-Estrada, O. A., Díez, P., & Fuenmayor, F. J. (2010). Accurate recovery-based upper error bounds for the extended finite element framework. Computer Methods in Applied Mechanics and Engineering, 199(37-40), 2607-2621. doi:10.1016/j.cma.2010.04.010

Ainsworth, M., & Oden, J. T. (2000). A Posteriori Error Estimation in Finite Element Analysis. doi:10.1002/9781118032824

Xiao, Q. Z., & Karihaloo, B. L. (2006). Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. International Journal for Numerical Methods in Engineering, 66(9), 1378-1410. doi:10.1002/nme.1601

Bordas, S., & Duflot, M. (2007). Derivative recovery and a posteriori error estimate for extended finite elements. Computer Methods in Applied Mechanics and Engineering, 196(35-36), 3381-3399. doi:10.1016/j.cma.2007.03.011

Bordas, S., Duflot, M., & Le, P. (2007). A simple error estimator for extended finite elements. Communications in Numerical Methods in Engineering, 24(11), 961-971. doi:10.1002/cnm.1001

Duflot, M., & Bordas, S. (2008). A posteriorierror estimation for extended finite elements by an extended global recovery. International Journal for Numerical Methods in Engineering, 76(8), 1123-1138. doi:10.1002/nme.2332

Ródenas, J. J., González-Estrada, O. A., Tarancón, J. E., & Fuenmayor, F. J. (2008). A recovery-type error estimator for the extended finite element method based onsingular+smoothstress field splitting. International Journal for Numerical Methods in Engineering, 76(4), 545-571. doi:10.1002/nme.2313

Abel, J. F., & Shephard, M. S. (1979). An algorithm for multipoint constraints in finite element analysis. International Journal for Numerical Methods in Engineering, 14(3), 464-467. doi:10.1002/nme.1620140312

Farhat, C., Lacour, C., & Rixen, D. (1998). Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. International Journal for Numerical Methods in Engineering, 43(6), 997-1016. doi:10.1002/(sici)1097-0207(19981130)43:6<997::aid-nme455>3.0.co;2-b

Van Loon, R., Anderson, P. D., de Hart, J., & Baaijens, F. P. T. (2004). A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. International Journal for Numerical Methods in Fluids, 46(5), 533-544. doi:10.1002/fld.775

Guo, B., & Babuška, I. (1986). The h-p version of the finite element method. Computational Mechanics, 1(1), 21-41. doi:10.1007/bf00298636

Ródenas, J. J., Bugeda, G., Albelda, J., & Oñate, E. (2011). On the need for the use of error-controlled finite element analyses in structural shape optimization processes. International Journal for Numerical Methods in Engineering, 87(11), 1105-1126. doi:10.1002/nme.3155

FUENMAYOR, F. J., & OLIVER, J. L. (1996). CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD. International Journal for Numerical Methods in Engineering, 39(23), 4039-4061. doi:10.1002/(sici)1097-0207(19961215)39:23<4039::aid-nme37>3.0.co;2-c

Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity. International Journal for Numerical Methods in Engineering, 33(7), 1365-1382. doi:10.1002/nme.1620330703

Zienkiewicz, O. C., Zhu, J. Z., & Wu, J. (1993). Superconvergent patch recovery techniques - some further tests. Communications in Numerical Methods in Engineering, 9(3), 251-258. doi:10.1002/cnm.1640090309

Zienkiewicz, O. C., & Zhu, J. Z. (1995). Superconvergence and the superconvergent patch recovery. Finite Elements in Analysis and Design, 19(1-2), 11-23. doi:10.1016/0168-874x(94)00054-j

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem