Mostrar el registro sencillo del ítem
dc.contributor.author | Nadal, E. | es_ES |
dc.contributor.author | Ródenas, J.J. | es_ES |
dc.contributor.author | Albelda Vitoria, José | es_ES |
dc.contributor.author | Tur Valiente, Manuel | es_ES |
dc.contributor.author | Tarancón Caro, José Enrique | es_ES |
dc.contributor.author | Fuenmayor Fernández, Francisco Javier | es_ES |
dc.date.accessioned | 2015-03-03T15:15:19Z | |
dc.date.available | 2015-03-03T15:15:19Z | |
dc.date.issued | 2013-02 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.uri | http://hdl.handle.net/10251/47650 | |
dc.description.abstract | This work presents an analysis methodology based on the use of the Finite Element Method (FEM) nowadays considered one of the main numerical tools for solving Boundary Value Problems (BVPs). The proposed methodology, so-called cg-FEM (Cartesian grid FEM), has been implemented for fast and accurate numerical analysis of 2D linear elasticity problems. The traditional FEM uses geometry-conforming meshes; however, in cg-FEM the analysis mesh is not conformal to the geometry. This allows for defining very efficient mesh generation techniques and using a robust integration procedure, to accurately integrate the domain's geometry. The hierarchical data structure used in cg-FEM together with the Cartesian meshes allow for trivial data sharing between similar entities. The cg-FEM methodology uses advanced recovery techniques to obtain an improved solution of the displacement and stress fields (for which a discretization error estimator in energy norm is available) that will be the output of the analysis. All this results in a substantial increase in accuracy and computational efficiency with respect to the standard FEM. cg-FEM has been applied in structural shape optimization showing robustness and computational efficiency in comparison with FEM solutions obtained with a commercial code, despite the fact that cg-FEM has been fully implemented in MATLAB. | es_ES |
dc.description.sponsorship | This work has been developed within the framework of research project DPI2010-20542 of the Ministerio de Economia y Competitividad (Spain). The financial support of the FPU program (AP2008-01086), the funding from Universitat Politecnica de Valencia, and Generalitat Valenciana (PROMETEO/2012/023) are also acknowledged. The authors also thank the support of the Framework Programme 7 Initial Training Network Funding under Grant no. 289361 "Integrating Numerical Simulation and Geometric Design Technology." | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | SUPERCONVERGENT PATCH RECOVERY | es_ES |
dc.subject | ACOUSTIC SCATTERING | es_ES |
dc.subject | DOMAIN DECOMPOSITION METHOD | es_ES |
dc.subject | SIMPLE ERROR ESTIMATOR | es_ES |
dc.subject | CRACK-GROWTH | es_ES |
dc.subject | MULTIPOINT CONSTRAINTS | es_ES |
dc.subject | BOUNDARY-CONDITIONS | es_ES |
dc.subject | PART I | es_ES |
dc.subject | APPROXIMATION | es_ES |
dc.subject | EQUILIBRIUM | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Efficient finite element methodology based on cartesian grids: application to structural shape optimization | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2013/953786 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20542/ES/DESARROLLO DE HERRAMIENTA 3D COMPUTACIONALMENTE EFICAZ Y DE ALTA PRECISION PARA ANALISIS Y DISEÑO ESTRUCTURAL BASADA EN MALLADOS CARTESIANOS DE EF INDEPENDIENTES DE GEOMETRIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/289361/EU/Integrating Numerical Simulation and Geometric Design Technology/ | en_EN |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AP2008-01086/ES/AP2008-01086/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Nadal, E.; Ródenas, J.; Albelda Vitoria, J.; Tur Valiente, M.; Tarancón Caro, JE.; Fuenmayor Fernández, FJ. (2013). Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstract and Applied Analysis. 2013:1-19. https://doi.org/10.1155/2013/953786 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2013/953786 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2013 | es_ES |
dc.relation.senia | 251796 | |
dc.identifier.eissn | 1687-0409 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Moés, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j | es_ES |
dc.description.references | Sukumar, N., & Prévost, J.-H. (2003). Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation. International Journal of Solids and Structures, 40(26), 7513-7537. doi:10.1016/j.ijsolstr.2003.08.002 | es_ES |
dc.description.references | Strouboulis, T., Copps, K., & Babuška, I. (2001). The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 190(32-33), 4081-4193. doi:10.1016/s0045-7825(01)00188-8 | es_ES |
dc.description.references | Strouboulis, T., Zhang, L., & Babuška, I. (2006). Assessment of the cost and accuracy of the generalized FEM. International Journal for Numerical Methods in Engineering, 69(2), 250-283. doi:10.1002/nme.1750 | es_ES |
dc.description.references | Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4), 289-314. doi:10.1016/s0045-7825(96)01087-0 | es_ES |
dc.description.references | Stolarska, M., Chopp, D. L., Moës, N., & Belytschko, T. (2001). Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 51(8), 943-960. doi:10.1002/nme.201 | es_ES |
dc.description.references | Moumnassi, M., Belouettar, S., Béchet, É., Bordas, S. P. A., Quoirin, D., & Potier-Ferry, M. (2011). Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces. Computer Methods in Applied Mechanics and Engineering, 200(5-8), 774-796. doi:10.1016/j.cma.2010.10.002 | es_ES |
dc.description.references | Legrain, G., Chevaugeon, N., & Dréau, K. (2012). High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation. Computer Methods in Applied Mechanics and Engineering, 241-244, 172-189. doi:10.1016/j.cma.2012.06.001 | es_ES |
dc.description.references | Burman, E., & Hansbo, P. (2010). Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering, 199(41-44), 2680-2686. doi:10.1016/j.cma.2010.05.011 | es_ES |
dc.description.references | HEIKKOLA, E., KUZNETSOV, Y. A., & LIPNIKOV, K. N. (1999). FICTITIOUS DOMAIN METHODS FOR THE NUMERICAL SOLUTION OF THREE-DIMENSIONAL ACOUSTIC SCATTERING PROBLEMS. Journal of Computational Acoustics, 07(03), 161-183. doi:10.1142/s0218396x99000126 | es_ES |
dc.description.references | Hetmaniuk, U., & Farhat, C. (2003). A finite element-based fictitious domain decomposition method for the fast solution of partially axisymmetric sound-hard acoustic scattering problems. Finite Elements in Analysis and Design, 39(8), 707-725. doi:10.1016/s0168-874x(03)00055-6 | es_ES |
dc.description.references | Farhat, C., & Hetmaniuk, U. (2002). A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part I: Dirichlet boundary conditions. International Journal for Numerical Methods in Engineering, 54(9), 1309-1332. doi:10.1002/nme.461 | es_ES |
dc.description.references | Ye, T., Mittal, R., Udaykumar, H. S., & Shyy, W. (1999). An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries. Journal of Computational Physics, 156(2), 209-240. doi:10.1006/jcph.1999.6356 | es_ES |
dc.description.references | Jahangirian, A., & Shoraka, Y. (2008). Adaptive unstructured grid generation for engineering computation of aerodynamic flows. Mathematics and Computers in Simulation, 78(5-6), 627-644. doi:10.1016/j.matcom.2008.04.004 | es_ES |
dc.description.references | Silva Santos, C. M., & Greaves, D. M. (2007). Using hierarchical Cartesian grids with multigrid acceleration. International Journal for Numerical Methods in Engineering, 69(8), 1755-1774. doi:10.1002/nme.1844 | es_ES |
dc.description.references | Jang, G.-W., Kim, Y. Y., & Choi, K. K. (2004). Remesh-free shape optimization using the wavelet-Galerkin method. International Journal of Solids and Structures, 41(22-23), 6465-6483. doi:10.1016/j.ijsolstr.2004.05.010 | es_ES |
dc.description.references | Mäkinen, R. A. E., Rossi, T., & Toivanen, J. (2000). A moving mesh fictitious domain approach for shape optimization problems. ESAIM: Mathematical Modelling and Numerical Analysis, 34(1), 31-45. doi:10.1051/m2an:2000129 | es_ES |
dc.description.references | Victoria, M., Querin, O. M., & Martí, P. (2010). Topology design for multiple loading conditions of continuum structures using isolines and isosurfaces. Finite Elements in Analysis and Design, 46(3), 229-237. doi:10.1016/j.finel.2009.09.003 | es_ES |
dc.description.references | Parussini, L., & Pediroda, V. (2009). Fictitious Domain approach with hp-finite element approximation for incompressible fluid flow. Journal of Computational Physics, 228(10), 3891-3910. doi:10.1016/j.jcp.2009.02.019 | es_ES |
dc.description.references | Bishop, J. (2003). Rapid stress analysis of geometrically complex domains using implicit meshing. Computational Mechanics, 30(5-6), 460-478. doi:10.1007/s00466-003-0424-5 | es_ES |
dc.description.references | Zhang, L., Gerstenberger, A., Wang, X., & Liu, W. K. (2004). Immersed finite element method. Computer Methods in Applied Mechanics and Engineering, 193(21-22), 2051-2067. doi:10.1016/j.cma.2003.12.044 | es_ES |
dc.description.references | Roma, A. M., Peskin, C. S., & Berger, M. J. (1999). An Adaptive Version of the Immersed Boundary Method. Journal of Computational Physics, 153(2), 509-534. doi:10.1006/jcph.1999.6293 | es_ES |
dc.description.references | García‐Ruíz, M. J., & Steven, G. P. (1999). Fixed grid finite elements in elasticity problems. Engineering Computations, 16(2), 145-164. doi:10.1108/02644409910257430 | es_ES |
dc.description.references | Daneshmand, F., & Kazemzadeh-Parsi, M. J. (2009). Static and dynamic analysis of 2D and 3D elastic solids using the modified FGFEM. Finite Elements in Analysis and Design, 45(11), 755-765. doi:10.1016/j.finel.2009.06.003 | es_ES |
dc.description.references | Bordas, S. P. A., Rabczuk, T., Hung, N.-X., Nguyen, V. P., Natarajan, S., Bog, T., … Hiep, N. V. (2010). Strain smoothing in FEM and XFEM. Computers & Structures, 88(23-24), 1419-1443. doi:10.1016/j.compstruc.2008.07.006 | es_ES |
dc.description.references | Simpson, R. N., Bordas, S. P. A., Trevelyan, J., & Rabczuk, T. (2012). A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 209-212, 87-100. doi:10.1016/j.cma.2011.08.008 | es_ES |
dc.description.references | Scott, M. A., Simpson, R. N., Evans, J. A., Lipton, S., Bordas, S. P. A., Hughes, T. J. R., & Sederberg, T. W. (2013). Isogeometric boundary element analysis using unstructured T-splines. Computer Methods in Applied Mechanics and Engineering, 254, 197-221. doi:10.1016/j.cma.2012.11.001 | es_ES |
dc.description.references | Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39-41), 4135-4195. doi:10.1016/j.cma.2004.10.008 | es_ES |
dc.description.references | Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206 | es_ES |
dc.description.references | Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702 | es_ES |
dc.description.references | Wiberg, N.-E., Abdulwahab, F., & Ziukas, S. (1994). Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. International Journal for Numerical Methods in Engineering, 37(20), 3417-3440. doi:10.1002/nme.1620372003 | es_ES |
dc.description.references | Blacker, T., & Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. International Journal for Numerical Methods in Engineering, 37(3), 517-536. doi:10.1002/nme.1620370309 | es_ES |
dc.description.references | Ramsay, A. C. A., & Maunder, E. A. W. (1996). Effective error sttimation from continous, boundary admissible estimated stress fields. Computers & Structures, 61(2), 331-343. doi:10.1016/0045-7949(96)00034-x | es_ES |
dc.description.references | Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903 | es_ES |
dc.description.references | Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837 | es_ES |
dc.description.references | Ródenas, J. J., González-Estrada, O. A., Díez, P., & Fuenmayor, F. J. (2010). Accurate recovery-based upper error bounds for the extended finite element framework. Computer Methods in Applied Mechanics and Engineering, 199(37-40), 2607-2621. doi:10.1016/j.cma.2010.04.010 | es_ES |
dc.description.references | Ainsworth, M., & Oden, J. T. (2000). A Posteriori Error Estimation in Finite Element Analysis. doi:10.1002/9781118032824 | es_ES |
dc.description.references | Xiao, Q. Z., & Karihaloo, B. L. (2006). Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. International Journal for Numerical Methods in Engineering, 66(9), 1378-1410. doi:10.1002/nme.1601 | es_ES |
dc.description.references | Bordas, S., & Duflot, M. (2007). Derivative recovery and a posteriori error estimate for extended finite elements. Computer Methods in Applied Mechanics and Engineering, 196(35-36), 3381-3399. doi:10.1016/j.cma.2007.03.011 | es_ES |
dc.description.references | Bordas, S., Duflot, M., & Le, P. (2007). A simple error estimator for extended finite elements. Communications in Numerical Methods in Engineering, 24(11), 961-971. doi:10.1002/cnm.1001 | es_ES |
dc.description.references | Duflot, M., & Bordas, S. (2008). A posteriorierror estimation for extended finite elements by an extended global recovery. International Journal for Numerical Methods in Engineering, 76(8), 1123-1138. doi:10.1002/nme.2332 | es_ES |
dc.description.references | Ródenas, J. J., González-Estrada, O. A., Tarancón, J. E., & Fuenmayor, F. J. (2008). A recovery-type error estimator for the extended finite element method based onsingular+smoothstress field splitting. International Journal for Numerical Methods in Engineering, 76(4), 545-571. doi:10.1002/nme.2313 | es_ES |
dc.description.references | Abel, J. F., & Shephard, M. S. (1979). An algorithm for multipoint constraints in finite element analysis. International Journal for Numerical Methods in Engineering, 14(3), 464-467. doi:10.1002/nme.1620140312 | es_ES |
dc.description.references | Farhat, C., Lacour, C., & Rixen, D. (1998). Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. International Journal for Numerical Methods in Engineering, 43(6), 997-1016. doi:10.1002/(sici)1097-0207(19981130)43:6<997::aid-nme455>3.0.co;2-b | es_ES |
dc.description.references | Van Loon, R., Anderson, P. D., de Hart, J., & Baaijens, F. P. T. (2004). A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. International Journal for Numerical Methods in Fluids, 46(5), 533-544. doi:10.1002/fld.775 | es_ES |
dc.description.references | Guo, B., & Babuška, I. (1986). The h-p version of the finite element method. Computational Mechanics, 1(1), 21-41. doi:10.1007/bf00298636 | es_ES |
dc.description.references | Ródenas, J. J., Bugeda, G., Albelda, J., & Oñate, E. (2011). On the need for the use of error-controlled finite element analyses in structural shape optimization processes. International Journal for Numerical Methods in Engineering, 87(11), 1105-1126. doi:10.1002/nme.3155 | es_ES |
dc.description.references | FUENMAYOR, F. J., & OLIVER, J. L. (1996). CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD. International Journal for Numerical Methods in Engineering, 39(23), 4039-4061. doi:10.1002/(sici)1097-0207(19961215)39:23<4039::aid-nme37>3.0.co;2-c | es_ES |
dc.description.references | Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity. International Journal for Numerical Methods in Engineering, 33(7), 1365-1382. doi:10.1002/nme.1620330703 | es_ES |
dc.description.references | Zienkiewicz, O. C., Zhu, J. Z., & Wu, J. (1993). Superconvergent patch recovery techniques - some further tests. Communications in Numerical Methods in Engineering, 9(3), 251-258. doi:10.1002/cnm.1640090309 | es_ES |
dc.description.references | Zienkiewicz, O. C., & Zhu, J. Z. (1995). Superconvergence and the superconvergent patch recovery. Finite Elements in Analysis and Design, 19(1-2), 11-23. doi:10.1016/0168-874x(94)00054-j | es_ES |