- -

Efficient finite element methodology based on cartesian grids: application to structural shape optimization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient finite element methodology based on cartesian grids: application to structural shape optimization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nadal, E. es_ES
dc.contributor.author Ródenas, J.J. es_ES
dc.contributor.author Albelda Vitoria, José es_ES
dc.contributor.author Tur Valiente, Manuel es_ES
dc.contributor.author Tarancón Caro, José Enrique es_ES
dc.contributor.author Fuenmayor Fernández, Francisco Javier es_ES
dc.date.accessioned 2015-03-03T15:15:19Z
dc.date.available 2015-03-03T15:15:19Z
dc.date.issued 2013-02
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/47650
dc.description.abstract This work presents an analysis methodology based on the use of the Finite Element Method (FEM) nowadays considered one of the main numerical tools for solving Boundary Value Problems (BVPs). The proposed methodology, so-called cg-FEM (Cartesian grid FEM), has been implemented for fast and accurate numerical analysis of 2D linear elasticity problems. The traditional FEM uses geometry-conforming meshes; however, in cg-FEM the analysis mesh is not conformal to the geometry. This allows for defining very efficient mesh generation techniques and using a robust integration procedure, to accurately integrate the domain's geometry. The hierarchical data structure used in cg-FEM together with the Cartesian meshes allow for trivial data sharing between similar entities. The cg-FEM methodology uses advanced recovery techniques to obtain an improved solution of the displacement and stress fields (for which a discretization error estimator in energy norm is available) that will be the output of the analysis. All this results in a substantial increase in accuracy and computational efficiency with respect to the standard FEM. cg-FEM has been applied in structural shape optimization showing robustness and computational efficiency in comparison with FEM solutions obtained with a commercial code, despite the fact that cg-FEM has been fully implemented in MATLAB. es_ES
dc.description.sponsorship This work has been developed within the framework of research project DPI2010-20542 of the Ministerio de Economia y Competitividad (Spain). The financial support of the FPU program (AP2008-01086), the funding from Universitat Politecnica de Valencia, and Generalitat Valenciana (PROMETEO/2012/023) are also acknowledged. The authors also thank the support of the Framework Programme 7 Initial Training Network Funding under Grant no. 289361 "Integrating Numerical Simulation and Geometric Design Technology." en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject SUPERCONVERGENT PATCH RECOVERY es_ES
dc.subject ACOUSTIC SCATTERING es_ES
dc.subject DOMAIN DECOMPOSITION METHOD es_ES
dc.subject SIMPLE ERROR ESTIMATOR es_ES
dc.subject CRACK-GROWTH es_ES
dc.subject MULTIPOINT CONSTRAINTS es_ES
dc.subject BOUNDARY-CONDITIONS es_ES
dc.subject PART I es_ES
dc.subject APPROXIMATION es_ES
dc.subject EQUILIBRIUM es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Efficient finite element methodology based on cartesian grids: application to structural shape optimization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2013/953786
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20542/ES/DESARROLLO DE HERRAMIENTA 3D COMPUTACIONALMENTE EFICAZ Y DE ALTA PRECISION PARA ANALISIS Y DISEÑO ESTRUCTURAL BASADA EN MALLADOS CARTESIANOS DE EF INDEPENDIENTES DE GEOMETRIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/289361/EU/Integrating Numerical Simulation and Geometric Design Technology/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AP2008-01086/ES/AP2008-01086/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Nadal, E.; Ródenas, J.; Albelda Vitoria, J.; Tur Valiente, M.; Tarancón Caro, JE.; Fuenmayor Fernández, FJ. (2013). Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstract and Applied Analysis. 2013:1-19. https://doi.org/10.1155/2013/953786 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2013/953786 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2013 es_ES
dc.relation.senia 251796
dc.identifier.eissn 1687-0409
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Moés, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j es_ES
dc.description.references Sukumar, N., & Prévost, J.-H. (2003). Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation. International Journal of Solids and Structures, 40(26), 7513-7537. doi:10.1016/j.ijsolstr.2003.08.002 es_ES
dc.description.references Strouboulis, T., Copps, K., & Babuška, I. (2001). The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 190(32-33), 4081-4193. doi:10.1016/s0045-7825(01)00188-8 es_ES
dc.description.references Strouboulis, T., Zhang, L., & Babuška, I. (2006). Assessment of the cost and accuracy of the generalized FEM. International Journal for Numerical Methods in Engineering, 69(2), 250-283. doi:10.1002/nme.1750 es_ES
dc.description.references Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4), 289-314. doi:10.1016/s0045-7825(96)01087-0 es_ES
dc.description.references Stolarska, M., Chopp, D. L., Moës, N., & Belytschko, T. (2001). Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 51(8), 943-960. doi:10.1002/nme.201 es_ES
dc.description.references Moumnassi, M., Belouettar, S., Béchet, É., Bordas, S. P. A., Quoirin, D., & Potier-Ferry, M. (2011). Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces. Computer Methods in Applied Mechanics and Engineering, 200(5-8), 774-796. doi:10.1016/j.cma.2010.10.002 es_ES
dc.description.references Legrain, G., Chevaugeon, N., & Dréau, K. (2012). High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation. Computer Methods in Applied Mechanics and Engineering, 241-244, 172-189. doi:10.1016/j.cma.2012.06.001 es_ES
dc.description.references Burman, E., & Hansbo, P. (2010). Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering, 199(41-44), 2680-2686. doi:10.1016/j.cma.2010.05.011 es_ES
dc.description.references HEIKKOLA, E., KUZNETSOV, Y. A., & LIPNIKOV, K. N. (1999). FICTITIOUS DOMAIN METHODS FOR THE NUMERICAL SOLUTION OF THREE-DIMENSIONAL ACOUSTIC SCATTERING PROBLEMS. Journal of Computational Acoustics, 07(03), 161-183. doi:10.1142/s0218396x99000126 es_ES
dc.description.references Hetmaniuk, U., & Farhat, C. (2003). A finite element-based fictitious domain decomposition method for the fast solution of partially axisymmetric sound-hard acoustic scattering problems. Finite Elements in Analysis and Design, 39(8), 707-725. doi:10.1016/s0168-874x(03)00055-6 es_ES
dc.description.references Farhat, C., & Hetmaniuk, U. (2002). A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part I: Dirichlet boundary conditions. International Journal for Numerical Methods in Engineering, 54(9), 1309-1332. doi:10.1002/nme.461 es_ES
dc.description.references Ye, T., Mittal, R., Udaykumar, H. S., & Shyy, W. (1999). An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries. Journal of Computational Physics, 156(2), 209-240. doi:10.1006/jcph.1999.6356 es_ES
dc.description.references Jahangirian, A., & Shoraka, Y. (2008). Adaptive unstructured grid generation for engineering computation of aerodynamic flows. Mathematics and Computers in Simulation, 78(5-6), 627-644. doi:10.1016/j.matcom.2008.04.004 es_ES
dc.description.references Silva Santos, C. M., & Greaves, D. M. (2007). Using hierarchical Cartesian grids with multigrid acceleration. International Journal for Numerical Methods in Engineering, 69(8), 1755-1774. doi:10.1002/nme.1844 es_ES
dc.description.references Jang, G.-W., Kim, Y. Y., & Choi, K. K. (2004). Remesh-free shape optimization using the wavelet-Galerkin method. International Journal of Solids and Structures, 41(22-23), 6465-6483. doi:10.1016/j.ijsolstr.2004.05.010 es_ES
dc.description.references Mäkinen, R. A. E., Rossi, T., & Toivanen, J. (2000). A moving mesh fictitious domain approach for shape optimization problems. ESAIM: Mathematical Modelling and Numerical Analysis, 34(1), 31-45. doi:10.1051/m2an:2000129 es_ES
dc.description.references Victoria, M., Querin, O. M., & Martí, P. (2010). Topology design for multiple loading conditions of continuum structures using isolines and isosurfaces. Finite Elements in Analysis and Design, 46(3), 229-237. doi:10.1016/j.finel.2009.09.003 es_ES
dc.description.references Parussini, L., & Pediroda, V. (2009). Fictitious Domain approach with hp-finite element approximation for incompressible fluid flow. Journal of Computational Physics, 228(10), 3891-3910. doi:10.1016/j.jcp.2009.02.019 es_ES
dc.description.references Bishop, J. (2003). Rapid stress analysis of geometrically complex domains using implicit meshing. Computational Mechanics, 30(5-6), 460-478. doi:10.1007/s00466-003-0424-5 es_ES
dc.description.references Zhang, L., Gerstenberger, A., Wang, X., & Liu, W. K. (2004). Immersed finite element method. Computer Methods in Applied Mechanics and Engineering, 193(21-22), 2051-2067. doi:10.1016/j.cma.2003.12.044 es_ES
dc.description.references Roma, A. M., Peskin, C. S., & Berger, M. J. (1999). An Adaptive Version of the Immersed Boundary Method. Journal of Computational Physics, 153(2), 509-534. doi:10.1006/jcph.1999.6293 es_ES
dc.description.references García‐Ruíz, M. J., & Steven, G. P. (1999). Fixed grid finite elements in elasticity problems. Engineering Computations, 16(2), 145-164. doi:10.1108/02644409910257430 es_ES
dc.description.references Daneshmand, F., & Kazemzadeh-Parsi, M. J. (2009). Static and dynamic analysis of 2D and 3D elastic solids using the modified FGFEM. Finite Elements in Analysis and Design, 45(11), 755-765. doi:10.1016/j.finel.2009.06.003 es_ES
dc.description.references Bordas, S. P. A., Rabczuk, T., Hung, N.-X., Nguyen, V. P., Natarajan, S., Bog, T., … Hiep, N. V. (2010). Strain smoothing in FEM and XFEM. Computers & Structures, 88(23-24), 1419-1443. doi:10.1016/j.compstruc.2008.07.006 es_ES
dc.description.references Simpson, R. N., Bordas, S. P. A., Trevelyan, J., & Rabczuk, T. (2012). A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 209-212, 87-100. doi:10.1016/j.cma.2011.08.008 es_ES
dc.description.references Scott, M. A., Simpson, R. N., Evans, J. A., Lipton, S., Bordas, S. P. A., Hughes, T. J. R., & Sederberg, T. W. (2013). Isogeometric boundary element analysis using unstructured T-splines. Computer Methods in Applied Mechanics and Engineering, 254, 197-221. doi:10.1016/j.cma.2012.11.001 es_ES
dc.description.references Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39-41), 4135-4195. doi:10.1016/j.cma.2004.10.008 es_ES
dc.description.references Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206 es_ES
dc.description.references Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702 es_ES
dc.description.references Wiberg, N.-E., Abdulwahab, F., & Ziukas, S. (1994). Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. International Journal for Numerical Methods in Engineering, 37(20), 3417-3440. doi:10.1002/nme.1620372003 es_ES
dc.description.references Blacker, T., & Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. International Journal for Numerical Methods in Engineering, 37(3), 517-536. doi:10.1002/nme.1620370309 es_ES
dc.description.references Ramsay, A. C. A., & Maunder, E. A. W. (1996). Effective error sttimation from continous, boundary admissible estimated stress fields. Computers & Structures, 61(2), 331-343. doi:10.1016/0045-7949(96)00034-x es_ES
dc.description.references Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903 es_ES
dc.description.references Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837 es_ES
dc.description.references Ródenas, J. J., González-Estrada, O. A., Díez, P., & Fuenmayor, F. J. (2010). Accurate recovery-based upper error bounds for the extended finite element framework. Computer Methods in Applied Mechanics and Engineering, 199(37-40), 2607-2621. doi:10.1016/j.cma.2010.04.010 es_ES
dc.description.references Ainsworth, M., & Oden, J. T. (2000). A Posteriori Error Estimation in Finite Element Analysis. doi:10.1002/9781118032824 es_ES
dc.description.references Xiao, Q. Z., & Karihaloo, B. L. (2006). Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. International Journal for Numerical Methods in Engineering, 66(9), 1378-1410. doi:10.1002/nme.1601 es_ES
dc.description.references Bordas, S., & Duflot, M. (2007). Derivative recovery and a posteriori error estimate for extended finite elements. Computer Methods in Applied Mechanics and Engineering, 196(35-36), 3381-3399. doi:10.1016/j.cma.2007.03.011 es_ES
dc.description.references Bordas, S., Duflot, M., & Le, P. (2007). A simple error estimator for extended finite elements. Communications in Numerical Methods in Engineering, 24(11), 961-971. doi:10.1002/cnm.1001 es_ES
dc.description.references Duflot, M., & Bordas, S. (2008). A posteriorierror estimation for extended finite elements by an extended global recovery. International Journal for Numerical Methods in Engineering, 76(8), 1123-1138. doi:10.1002/nme.2332 es_ES
dc.description.references Ródenas, J. J., González-Estrada, O. A., Tarancón, J. E., & Fuenmayor, F. J. (2008). A recovery-type error estimator for the extended finite element method based onsingular+smoothstress field splitting. International Journal for Numerical Methods in Engineering, 76(4), 545-571. doi:10.1002/nme.2313 es_ES
dc.description.references Abel, J. F., & Shephard, M. S. (1979). An algorithm for multipoint constraints in finite element analysis. International Journal for Numerical Methods in Engineering, 14(3), 464-467. doi:10.1002/nme.1620140312 es_ES
dc.description.references Farhat, C., Lacour, C., & Rixen, D. (1998). Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. International Journal for Numerical Methods in Engineering, 43(6), 997-1016. doi:10.1002/(sici)1097-0207(19981130)43:6<997::aid-nme455>3.0.co;2-b es_ES
dc.description.references Van Loon, R., Anderson, P. D., de Hart, J., & Baaijens, F. P. T. (2004). A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. International Journal for Numerical Methods in Fluids, 46(5), 533-544. doi:10.1002/fld.775 es_ES
dc.description.references Guo, B., & Babuška, I. (1986). The h-p version of the finite element method. Computational Mechanics, 1(1), 21-41. doi:10.1007/bf00298636 es_ES
dc.description.references Ródenas, J. J., Bugeda, G., Albelda, J., & Oñate, E. (2011). On the need for the use of error-controlled finite element analyses in structural shape optimization processes. International Journal for Numerical Methods in Engineering, 87(11), 1105-1126. doi:10.1002/nme.3155 es_ES
dc.description.references FUENMAYOR, F. J., & OLIVER, J. L. (1996). CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD. International Journal for Numerical Methods in Engineering, 39(23), 4039-4061. doi:10.1002/(sici)1097-0207(19961215)39:23<4039::aid-nme37>3.0.co;2-c es_ES
dc.description.references Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity. International Journal for Numerical Methods in Engineering, 33(7), 1365-1382. doi:10.1002/nme.1620330703 es_ES
dc.description.references Zienkiewicz, O. C., Zhu, J. Z., & Wu, J. (1993). Superconvergent patch recovery techniques - some further tests. Communications in Numerical Methods in Engineering, 9(3), 251-258. doi:10.1002/cnm.1640090309 es_ES
dc.description.references Zienkiewicz, O. C., & Zhu, J. Z. (1995). Superconvergence and the superconvergent patch recovery. Finite Elements in Analysis and Design, 19(1-2), 11-23. doi:10.1016/0168-874x(94)00054-j es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem