- -

Lattice dynamics of Sb2Te3 at high pressures

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Lattice dynamics of Sb2Te3 at high pressures

Show full item record

Gomis Hilario, O.; Vilaplana Cerda, RI.; Manjón Herrera, FJ.; Rodríguez-Hernández, P.; Pérez-González, E.; Muñoz, A.; Kucek, V.... (2011). Lattice dynamics of Sb2Te3 at high pressures. Physical Review B. 84:174305-1-174305-12. https://doi.org/10.1103/PhysRevB.84.174305

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47799

Files in this item

Item Metadata

Title: Lattice dynamics of Sb2Te3 at high pressures
Author: Gomis Hilario, Oscar Vilaplana Cerda, Rosario Isabel Manjón Herrera, Francisco Javier Rodríguez-Hernández, P. Pérez-González, E. Muñoz, A. Kucek, V. Drasar, C.
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica
Issued date:
Abstract:
We report an experimental and theoretical lattice dynamics study of antimony telluride (Sb 2Te 3) up to 26 GPa together with a theoretical study of its structural stability under pressure. Raman-active modes of the ...[+]
Subjects: Electronic topological transition , Initio molecular-dynamics , Total-Energy calculations , Augmented-wave method , Single dirac cone , Thermoelectric properties , Phase-transition , Hydrostatic pressure , Basis-set , Bi2Te3
Copyrigths: Reserva de todos los derechos
Source:
Physical Review B. (issn: 1098-0121 ) (eissn: 1550-235X )
DOI: 10.1103/PhysRevB.84.174305
Publisher:
American Physical Society
Publisher version: http://journals.aps.org/prb/pdf/10.1103/PhysRevB.84.174305
Project ID:
info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-03/ES/MATERIALES, NANOMATERIALES Y AGREGRADOS BAJO CONDICIONES EXTREMAS. PROPIEDADES ELECTRONICAS Y DINAMICAS DESDE METODOS AB INITIO/ /
info:eu-repo/grantAgreement/MSMT//0021627501/
info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-04/ES/CRECIMIENTO Y CARACTERIZACION DE NANOESTRUCTURAS DE OXIDOS METALICOS BAJO ALTAS PRESIONES/
info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/
Thanks:
This work has been done under financial support from Spanish MICINN under Project Nos. MAT2010-21270-C04-03/04 and CSD-2007-00045 and supported by the Ministry of Education, Youth and Sports of the Czech Republic (MSM ...[+]
Type: Artículo

References

Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7(2), 105-114. doi:10.1038/nmat2090

Venkatasubramanian, R., Siivola, E., Colpitts, T., & O’Quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602. doi:10.1038/35098012

Harman, T. C. (2002). Quantum Dot Superlattice Thermoelectric Materials and Devices. Science, 297(5590), 2229-2232. doi:10.1126/science.1072886 [+]
Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7(2), 105-114. doi:10.1038/nmat2090

Venkatasubramanian, R., Siivola, E., Colpitts, T., & O’Quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602. doi:10.1038/35098012

Harman, T. C. (2002). Quantum Dot Superlattice Thermoelectric Materials and Devices. Science, 297(5590), 2229-2232. doi:10.1126/science.1072886

Chen, J., Sun, T., Sim, D., Peng, H., Wang, H., Fan, S., … Yan, Q. (2010). Sb2Te3Nanoparticles with Enhanced Seebeck Coefficient and Low Thermal Conductivity. Chemistry of Materials, 22(10), 3086-3092. doi:10.1021/cm9038297

Yin, Y., Sone, H., & Hosaka, S. (2007). Characterization of nitrogen-doped Sb2Te3 films and their application to phase-change memory. Journal of Applied Physics, 102(6), 064503. doi:10.1063/1.2778737

Kim, M. S., Cho, S. H., Hong, S. K., Roh, J. S., & Choi, D. J. (2008). Crystallization characteristics of nitrogen-doped Sb2Te3 films for PRAM application. Ceramics International, 34(4), 1043-1046. doi:10.1016/j.ceramint.2007.09.078

Anderson, T. L., & Krause, H. B. (1974). Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3−y Se y compounds. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(5), 1307-1310. doi:10.1107/s0567740874004729

Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6), 438-442. doi:10.1038/nphys1270

Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045-3067. doi:10.1103/revmodphys.82.3045

Moore, J. E. (2010). The birth of topological insulators. Nature, 464(7286), 194-198. doi:10.1038/nature08916

Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., … Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402. doi:10.1038/nphys1274

Wang, G., & Cagin, T. (2007). Electronic structure of the thermoelectric materialsBi2Te3andSb2Te3from first-principles calculations. Physical Review B, 76(7). doi:10.1103/physrevb.76.075201

Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science, 325(5937), 178-181. doi:10.1126/science.1173034

Badding, J. V., Meng, J. F., & Polvani, D. A. (1998). Pressure Tuning in the Search for New and Improved Solid State Materials. Chemistry of Materials, 10(10), 2889-2894. doi:10.1021/cm9802393

Polvani, D. A., Meng, J. F., Chandra Shekar, N. V., Sharp, J., & Badding, J. V. (2001). Large Improvement in Thermoelectric Properties in Pressure-Tuned p-Type Sb1.5Bi0.5Te3. Chemistry of Materials, 13(6), 2068-2071. doi:10.1021/cm000888q

Chandra Shekar, N. V., Polvani, D. A., Meng, J. F., & Badding, J. V. (2005). Improved thermoelectric properties due to electronic topological transition under high pressure. Physica B: Condensed Matter, 358(1-4), 14-18. doi:10.1016/j.physb.2004.12.020

Ovsyannikov, S. V., Shchennikov, V. V., Vorontsov, G. V., Manakov, A. Y., Likhacheva, A. Y., & Kulbachinskii, V. A. (2008). Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. Journal of Applied Physics, 104(5), 053713. doi:10.1063/1.2973201

Ovsyannikov, S. V., & Shchennikov, V. V. (2010). High-Pressure Routes in the Thermoelectricity or How One Can Improve a Performance of Thermoelectrics†. Chemistry of Materials, 22(3), 635-647. doi:10.1021/cm902000x

Li, C., Ruoff, A. L., & Spencer, C. W. (1961). Effect of Pressure on the Energy Gap of Bi2Te3. Journal of Applied Physics, 32(9), 1733-1735. doi:10.1063/1.1728426

Khvostantsev, L. G., Orlov, A. I., Abrikosov, N. K., & Ivanova, L. D. (1980). Thermoelectric properties and phase transition in Sb2Te3 under hydrostatic pressure up to 9 GPa. Physica Status Solidi (a), 58(1), 37-40. doi:10.1002/pssa.2210580103

Sakai, N., Kajiwara, T., Takemura, K., Minomura, S., & Fujii, Y. (1981). Pressure-induced phase transition in Sb2Te3. Solid State Communications, 40(12), 1045-1047. doi:10.1016/0038-1098(81)90248-9

Khvostantsev, L. G., Orlov, A. I., Abrikosov, N. K., & Ivanova, L. D. (1985). Kinetic Properties and Phase Transitions in Sb2Te3 under Hydrostatic Pressure up to 9 GPa. physica status solidi (a), 89(1), 301-309. doi:10.1002/pssa.2210890132

Thonhauser, T., Scheidemantel, T. J., Sofo, J. O., Badding, J. V., & Mahan, G. D. (2003). Thermoelectric properties ofSb2Te3under pressure and uniaxial stress. Physical Review B, 68(8). doi:10.1103/physrevb.68.085201

Thonhauser, T. (2004). Influence of negative pressure on thermoelectric properties of Sb2Te3. Solid State Communications, 129(4), 249-253. doi:10.1016/j.ssc.2003.10.006

Einaga, M., Tanabe, Y., Nakayama, A., Ohmura, A., Ishikawa, F., & Yamada, Y. (2010). New superconducting phase of Bi2Te3under pressure above 11 GPa. Journal of Physics: Conference Series, 215, 012036. doi:10.1088/1742-6596/215/1/012036

Zhang, J. L., Zhang, S. J., Weng, H. M., Zhang, W., Yang, L. X., Liu, Q. Q., … Jin, C. Q. (2010). Pressure-induced superconductivity in topological parent compound Bi2Te3. Proceedings of the National Academy of Sciences, 108(1), 24-28. doi:10.1073/pnas.1014085108

Jacobsen, M. K., Kumar, R. S., Cornelius, A. L., Sinogeiken, S. V., Nico, M. F., Elert, M., … Nguyen, J. (2008). HIGH PRESSURE X-RAY DIFFRACTION STUDIES OF Bi[sub 2−x]Sb[sub x]Te[sub 3] (x = 0,1,2). doi:10.1063/1.2833001

Nakayama, A., Einaga, M., Tanabe, Y., Nakano, S., Ishikawa, F., & Yamada, Y. (2009). Structural phase transition in Bi2Te3 under high pressure. High Pressure Research, 29(2), 245-249. doi:10.1080/08957950902951633

Einaga, M., Ohmura, A., Nakayama, A., Ishikawa, F., Yamada, Y., & Nakano, S. (2011). Pressure-induced phase transition of Bi2Te3to a bcc structure. Physical Review B, 83(9). doi:10.1103/physrevb.83.092102

Zhu, L., Wang, H., Wang, Y., Lv, J., Ma, Y., Cui, Q., … Zou, G. (2011). Substitutional Alloy of Bi and Te at High Pressure. Physical Review Letters, 106(14). doi:10.1103/physrevlett.106.145501

Itskevich, E. S., Kashirskaya, L. M., & Kraidenov, V. F. (1997). Anomalies in the low-temperature thermoelectric power of p-Bi2Te3 and Te associated with topological electronic transitions under pressure. Semiconductors, 31(3), 276-278. doi:10.1134/1.1187126

Polian, A., Gauthier, M., Souza, S. M., Trichês, D. M., Cardoso de Lima, J., & Grandi, T. A. (2011). Two-dimensional pressure-induced electronic topological transition in Bi2Te3. Physical Review B, 83(11). doi:10.1103/physrevb.83.113106

Vilaplana, R., Santamaría-Pérez, D., Gomis, O., Manjón, F. J., González, J., Segura, A., … Kucek, V. (2011). Structural and vibrational study of Bi2Se3under high pressure. Physical Review B, 84(18). doi:10.1103/physrevb.84.184110

Richter, W., & Becker, C. R. (1977). A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 <x < 1), (Bi1−ySby)2Te3 (0 <y < 1). Physica Status Solidi (b), 84(2), 619-628. doi:10.1002/pssb.2220840226

Sosso, G. C., Caravati, S., & Bernasconi, M. (2009). Vibrational properties of crystalline Sb2Te3from first principles. Journal of Physics: Condensed Matter, 21(9), 095410. doi:10.1088/0953-8984/21/9/095410

Dagens, L. (1978). Phonon anomaly near a Fermi surface topological transition. Journal of Physics F: Metal Physics, 8(10), 2093-2113. doi:10.1088/0305-4608/8/10/010

Dagens, L., & Lopez-Rios, C. (1979). Thermodynamic properties of a metal near a Fermi surface topological transition: the anomalous electron-phonon interaction contribution. Journal of Physics F: Metal Physics, 9(11), 2195-2216. doi:10.1088/0305-4608/9/11/011

Goncharov, A. ., & Struzhkin, V. . (2003). Pressure dependence of the Raman spectrum, lattice parameters and superconducting critical temperature of MgB2: evidence for pressure-driven phonon-assisted electronic topological transition. Physica C: Superconductivity, 385(1-2), 117-130. doi:10.1016/s0921-4534(02)02311-0

Antonangeli, D., Farber, D. L., Said, A. H., Benedetti, L. R., Aracne, C. M., Landa, A., … Klepeis, J. E. (2010). Shear softening in tantalum at megabar pressures. Physical Review B, 82(13). doi:10.1103/physrevb.82.132101

Santamaría-Pérez, D., Vegas, A., Muehle, C., & Jansen, M. (2011). Structural behaviour of alkaline sulfides under compression: High-pressure experimental study on Cs2S. The Journal of Chemical Physics, 135(5), 054511. doi:10.1063/1.3617236

Vilaplana, R., Gomis, O., Manjón, F. J., Segura, A., Pérez-González, E., Rodríguez-Hernández, P., … Kucek, V. (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B, 84(10). doi:10.1103/physrevb.84.104112

Larson, P. (2006). Effects of uniaxial and hydrostatic pressure on the valence band maximum inSb2Te3: An electronic structure study. Physical Review B, 74(20). doi:10.1103/physrevb.74.205113

Lošťák, P., Beneš, L., Civiš, S., & Süssmann, H. (1990). Preparation and some physical properties of Bi2−xInxSe3 single crystals. Journal of Materials Science, 25(1), 277-282. doi:10.1007/bf00544220

Horák, J., Quayle, P. C., Dyck, J. S., Drašar, Č., Lošt’ák, P., & Uher, C. (2008). Defect structure of Sb2−xCrxTe3 single crystals. Journal of Applied Physics, 103(1), 013516. doi:10.1063/1.2826940

Piermarini, G. J., Block, S., & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44(12), 5377-5382. doi:10.1063/1.1662159

Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030

Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864

Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558

Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251

Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953

Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758

Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406

Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863

Blanco, M. A., Francisco, E., & Luaña, V. (2004). GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 158(1), 57-72. doi:10.1016/j.comphy.2003.12.001

Cardona, M. (2004). Phonon widths versus pressure. High Pressure Research, 24(1), 17-23. doi:10.1080/08957950310001635819

Cardona, M. (2004). Effects of pressure on the phonon–phonon and electron–phonon interactions in semiconductors. physica status solidi (b), 241(14), 3128-3137. doi:10.1002/pssb.200405202

Ulrich, C., Mroginski, M. A., Goñi, A. R., Cantarero, A., Schwarz, U., Muñoz, V., & Syassen, K. (1996). Vibrational Properties of InSe under Pressure: Experiment and Theory. physica status solidi (b), 198(1), 121-127. doi:10.1002/pssb.2221980117

Kulibekov, A. M., Olijnyk, H. P., Jephcoat, A. P., Salaeva, Z. Y., Onari, S., & Allakhverdiev, K. R. (2003). Raman scattering under pressure and the phase transition in ɛ-GaSe. physica status solidi (b), 235(2), 517-520. doi:10.1002/pssb.200301613

Cheng, W., & Ren, S.-F. (2011). Phonons of single quintuple Bi2Te3and Bi2Se3films and bulk materials. Physical Review B, 83(9). doi:10.1103/physrevb.83.094301

Buga, S. G., Serebryanaya, N. R., Dubitskiy, G. A., Semenova, E. E., Aksenenkov, V. V., & Blank, V. D. (2011). Structure and electrical properties of Sb2Te3and Bi0.4Sb1.6Te3metastable phases obtained by HPHT treatment. High Pressure Research, 31(1), 86-90. doi:10.1080/08957959.2010.523422

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record