- -

Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene

Show full item record

Ballesteros Garrido, R.; De Miguel De La Torre, M.; Domenech-Carbo, A.; Alvaro Rodríguez, MM.; García Gómez, H. (2013). Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene. Chemical Communications. 49(31):3236-3238. doi:10.1039/c3cc39145k

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47808

Files in this item

Item Metadata

Title: Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene
Author: Ballesteros Garrido, Rafael De Miguel de la Torre, Maykel Domenech-Carbo, Antonio Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
A modified graphene oxide contg. aza-9-crown-3 ether units covalently anchored was prepd.; aq. suspensions of this material in the presence of Li+, Na+ and K+ cations exhibit enhanced electrochem. response, enhanced ...[+]
Subjects: Graphite oxide , Reduction
Copyrigths: Cerrado
Source:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c3cc39145k
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c3cc39145k
Type: Artículo

References

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969

Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224. doi:10.1038/nnano.2009.58 [+]
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969

Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224. doi:10.1038/nnano.2009.58

Delgado, J. L., Herranz, M., & Martín, N. (2008). The nano-forms of carbon. Journal of Materials Chemistry, 18(13), 1417. doi:10.1039/b717218d

Singh, P., Campidelli, S., Giordani, S., Bonifazi, D., Bianco, A., & Prato, M. (2009). Organic functionalisation and characterisation of single-walled carbon nanotubes. Chemical Society Reviews, 38(8), 2214. doi:10.1039/b518111a

Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103g

De Miguel, M., Álvaro, M., & García, H. (2012). Graphene as a Quencher of Electronic Excited States of Photochemical Probes. Langmuir, 28(5), 2849-2857. doi:10.1021/la204023w

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034

Yang, H., Shan, C., Li, F., Han, D., Zhang, Q., & Niu, L. (2009). Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chemical Communications, (26), 3880. doi:10.1039/b905085j

Cai, W., Piner, R. D., Stadermann, F. J., Park, S., Shaibat, M. A., Ishii, Y., … Ruoff, R. S. (2008). Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide. Science, 321(5897), 1815-1817. doi:10.1126/science.1162369

Min, S., & Lu, G. (2011). Dye-Sensitized Reduced Graphene Oxide Photocatalysts for Highly Efficient Visible-Light-Driven Water Reduction. The Journal of Physical Chemistry C, 115(28), 13938-13945. doi:10.1021/jp203750z

Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record