- -

Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ballesteros Garrido, Rafael es_ES
dc.contributor.author De Miguel de la Torre, Maykel es_ES
dc.contributor.author Domenech-Carbo, Antonio es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2015-03-06T11:02:48Z
dc.date.available 2015-03-06T11:02:48Z
dc.date.issued 2013
dc.identifier.issn 1359-7345
dc.identifier.uri http://hdl.handle.net/10251/47808
dc.description.abstract A modified graphene oxide contg. aza-9-crown-3 ether units covalently anchored was prepd.; aq. suspensions of this material in the presence of Li+, Na+ and K+ cations exhibit enhanced electrochem. response, enhanced photoinduced charge sepn. and longer lifetimes, facts that can be attributed to stabilization of electrons on graphene oxide by the nearby alkali metal cation-azacrown complexes. es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Graphite oxide es_ES
dc.subject Reduction es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3cc39145k
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Ballesteros Garrido, R.; De Miguel De La Torre, M.; Domenech-Carbo, A.; Alvaro Rodríguez, MM.; García Gómez, H. (2013). Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene. Chemical Communications. 49(31):3236-3238. doi:10.1039/c3cc39145k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3cc39145k es_ES
dc.description.upvformatpinicio 3236 es_ES
dc.description.upvformatpfin 3238 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 49 es_ES
dc.description.issue 31 es_ES
dc.relation.senia 259374
dc.description.references Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 es_ES
dc.description.references Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969 es_ES
dc.description.references Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224. doi:10.1038/nnano.2009.58 es_ES
dc.description.references Delgado, J. L., Herranz, M., & Martín, N. (2008). The nano-forms of carbon. Journal of Materials Chemistry, 18(13), 1417. doi:10.1039/b717218d es_ES
dc.description.references Singh, P., Campidelli, S., Giordani, S., Bonifazi, D., Bianco, A., & Prato, M. (2009). Organic functionalisation and characterisation of single-walled carbon nanotubes. Chemical Society Reviews, 38(8), 2214. doi:10.1039/b518111a es_ES
dc.description.references Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103g es_ES
dc.description.references De Miguel, M., Álvaro, M., & García, H. (2012). Graphene as a Quencher of Electronic Excited States of Photochemical Probes. Langmuir, 28(5), 2849-2857. doi:10.1021/la204023w es_ES
dc.description.references Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034 es_ES
dc.description.references Yang, H., Shan, C., Li, F., Han, D., Zhang, Q., & Niu, L. (2009). Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chemical Communications, (26), 3880. doi:10.1039/b905085j es_ES
dc.description.references Cai, W., Piner, R. D., Stadermann, F. J., Park, S., Shaibat, M. A., Ishii, Y., … Ruoff, R. S. (2008). Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide. Science, 321(5897), 1815-1817. doi:10.1126/science.1162369 es_ES
dc.description.references Min, S., & Lu, G. (2011). Dye-Sensitized Reduced Graphene Oxide Photocatalysts for Highly Efficient Visible-Light-Driven Water Reduction. The Journal of Physical Chemistry C, 115(28), 13938-13945. doi:10.1021/jp203750z es_ES
dc.description.references Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem