Mostrar el registro sencillo del ítem
dc.contributor.author | Ballesteros Garrido, Rafael | es_ES |
dc.contributor.author | De Miguel de la Torre, Maykel | es_ES |
dc.contributor.author | Domenech-Carbo, Antonio | es_ES |
dc.contributor.author | Alvaro Rodríguez, Maria Mercedes | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2015-03-06T11:02:48Z | |
dc.date.available | 2015-03-06T11:02:48Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1359-7345 | |
dc.identifier.uri | http://hdl.handle.net/10251/47808 | |
dc.description.abstract | A modified graphene oxide contg. aza-9-crown-3 ether units covalently anchored was prepd.; aq. suspensions of this material in the presence of Li+, Na+ and K+ cations exhibit enhanced electrochem. response, enhanced photoinduced charge sepn. and longer lifetimes, facts that can be attributed to stabilization of electrons on graphene oxide by the nearby alkali metal cation-azacrown complexes. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Graphite oxide | es_ES |
dc.subject | Reduction | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3cc39145k | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Ballesteros Garrido, R.; De Miguel De La Torre, M.; Domenech-Carbo, A.; Alvaro Rodríguez, MM.; García Gómez, H. (2013). Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene. Chemical Communications. 49(31):3236-3238. doi:10.1039/c3cc39145k | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c3cc39145k | es_ES |
dc.description.upvformatpinicio | 3236 | es_ES |
dc.description.upvformatpfin | 3238 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 49 | es_ES |
dc.description.issue | 31 | es_ES |
dc.relation.senia | 259374 | |
dc.description.references | Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 | es_ES |
dc.description.references | Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969 | es_ES |
dc.description.references | Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224. doi:10.1038/nnano.2009.58 | es_ES |
dc.description.references | Delgado, J. L., Herranz, M., & Martín, N. (2008). The nano-forms of carbon. Journal of Materials Chemistry, 18(13), 1417. doi:10.1039/b717218d | es_ES |
dc.description.references | Singh, P., Campidelli, S., Giordani, S., Bonifazi, D., Bianco, A., & Prato, M. (2009). Organic functionalisation and characterisation of single-walled carbon nanotubes. Chemical Society Reviews, 38(8), 2214. doi:10.1039/b518111a | es_ES |
dc.description.references | Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103g | es_ES |
dc.description.references | De Miguel, M., Álvaro, M., & García, H. (2012). Graphene as a Quencher of Electronic Excited States of Photochemical Probes. Langmuir, 28(5), 2849-2857. doi:10.1021/la204023w | es_ES |
dc.description.references | Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034 | es_ES |
dc.description.references | Yang, H., Shan, C., Li, F., Han, D., Zhang, Q., & Niu, L. (2009). Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chemical Communications, (26), 3880. doi:10.1039/b905085j | es_ES |
dc.description.references | Cai, W., Piner, R. D., Stadermann, F. J., Park, S., Shaibat, M. A., Ishii, Y., … Ruoff, R. S. (2008). Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide. Science, 321(5897), 1815-1817. doi:10.1126/science.1162369 | es_ES |
dc.description.references | Min, S., & Lu, G. (2011). Dye-Sensitized Reduced Graphene Oxide Photocatalysts for Highly Efficient Visible-Light-Driven Water Reduction. The Journal of Physical Chemistry C, 115(28), 13938-13945. doi:10.1021/jp203750z | es_ES |
dc.description.references | Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274 | es_ES |