- -

Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author Opanasenko, Maksym es_ES
dc.contributor.author Cejka, Jirí es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2015-03-06T12:31:11Z
dc.date.issued 2013-02-11
dc.identifier.issn 1615-4150
dc.identifier.issn 10.1002/adsc.201200618
dc.identifier.uri http://hdl.handle.net/10251/47831
dc.description.abstract [EN] This review summarizes the use of metal organic frameworks (MOFs) as solid catalysts for condensation reactions. After an introductory section, in which condensation reactions are generally presented, a list of the MOFs employed as condensation catalyst is given. The main part of the present review is organized according to the use of MOFs as solid acids, solid bases or as bi-functional solids containing both acid and basic sites. Throughout the review, the emphasis has been made on discussing the stability of the MOFs, their reusability and in providing a comparison of the performance of MOFs with respect to other homogeneous and heterogeneous catalysts. Finally, we summarize the current state-of-the-art and provide our view on future trends and developments in this field. es_ES
dc.description.sponsorship Financial support by the Spanish DGI (CTQ 2009-11587, CTQ 2010-18671 and CONSOLIDER MULTICAT) is gratefully acknowledged. The research leading to these results has received funding from the European Communitys Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 228862. J.Cˇ. thanks the Czech Science Foundation for financial support (Centre of Excellence – P106/12/G015)
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Advanced Synthesis and Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Aldol condensation es_ES
dc.subject Green chemistry es_ES
dc.subject Henry reaction es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Knoevenagel condensation es_ES
dc.subject Metal organic frameworks es_ES
dc.subject Pechmann condensation es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/adsc.201200618
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-11587/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GACR//P106%2F12%2FG015/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Dhakshinamoorthy, A.; Opanasenko, M.; Cejka, J.; García Gómez, H. (2013). Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups. Advanced Synthesis and Catalysis. 355(2):247-268. https://doi.org/10.1002/adsc.201200618 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/adsc.201200618 es_ES
dc.description.upvformatpinicio 247 es_ES
dc.description.upvformatpfin 268 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 355 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 240569
dc.identifier.eissn 1615-4169
dc.contributor.funder European Commission
dc.contributor.funder Czech Science Foundation
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Freeman, F. (1980). Properties and reactions of ylidenemalononitriles. Chemical Reviews, 80(4), 329-350. doi:10.1021/cr60326a004 es_ES
dc.description.references Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e es_ES
dc.description.references Sheldon, R. A. (1997). Catalysis: The Key to Waste Minimization. Journal of Chemical Technology & Biotechnology, 68(4), 381-388. doi:10.1002/(sici)1097-4660(199704)68:4<381::aid-jctb620>3.0.co;2-3 es_ES
dc.description.references Karmakar, B., Chowdhury, B., & Banerji, J. (2010). Mesoporous titanosilicate Ti-TUD-1 catalyzed Knoevenagel reaction: An efficient green synthesis of trisubstituted electrophilic olefins. Catalysis Communications, 11(7), 601-605. doi:10.1016/j.catcom.2010.01.003 es_ES
dc.description.references Parida, K. M., & Rath, D. (2009). Amine functionalized MCM-41: An active and reusable catalyst for Knoevenagel condensation reaction. Journal of Molecular Catalysis A: Chemical, 310(1-2), 93-100. doi:10.1016/j.molcata.2009.06.001 es_ES
dc.description.references Martins, L., Hölderich, W., Hammer, P., & Cardoso, D. (2010). Preparation of different basic Si–MCM-41 catalysts and application in the Knoevenagel and Claisen–Schmidt condensation reactions. Journal of Catalysis, 271(2), 220-227. doi:10.1016/j.jcat.2010.01.015 es_ES
dc.description.references Gutiérrez-Sánchez, C., Calvino-Casilda, V., Pérez-Mayoral, E., Martín-Aranda, R. M., López-Peinado, A. J., Bejblová, M., & Čejka, J. (2008). Coumarins Preparation by Pechmann Reaction Under Ultrasound Irradiation. Synthesis of Hymecromone as Insecticide Intermediate. Catalysis Letters, 128(3-4), 318-322. doi:10.1007/s10562-008-9709-9 es_ES
dc.description.references Climent, M. J., Corma, A., Iborra, S., & Velty, A. (2002). Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs. Journal of Molecular Catalysis A: Chemical, 182-183, 327-342. doi:10.1016/s1381-1169(01)00501-5 es_ES
dc.description.references Boronat, M., Climent, M. J., Corma, A., Iborra, S., Montón, R., & Sabater, M. J. (2010). Bifunctional Acid-Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 16(4), 1221-1231. doi:10.1002/chem.200901519 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g es_ES
dc.description.references Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248 es_ES
dc.description.references Eddaoudi, M., Li, H., & Yaghi, O. M. (2000). Highly Porous and Stable Metal−Organic Frameworks:  Structure Design and Sorption Properties. Journal of the American Chemical Society, 122(7), 1391-1397. doi:10.1021/ja9933386 es_ES
dc.description.references Kitagawa, S., Kitaura, R., & Noro, S. (2004). Funktionale poröse Koordinationspolymere. Angewandte Chemie, 116(18), 2388-2430. doi:10.1002/ange.200300610 es_ES
dc.description.references Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 es_ES
dc.description.references Kitagawa, S., Noro, S., & Nakamura, T. (2006). Pore surface engineering of microporous coordination polymers. Chem. Commun., (7), 701-707. doi:10.1039/b511728c es_ES
dc.description.references Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications, 48(92), 11275. doi:10.1039/c2cc34329k es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063 es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 es_ES
dc.description.references Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f es_ES
dc.description.references Wang, Z., Chen, G., & Ding, K. (2009). Self-Supported Catalysts. Chemical Reviews, 109(2), 322-359. doi:10.1021/cr800406u es_ES
dc.description.references Ranocchiari, M., & Bokhoven, J. A. van. (2011). Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics, 13(14), 6388. doi:10.1039/c0cp02394a es_ES
dc.description.references Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e es_ES
dc.description.references Kurfiřtová, L., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., & Čejka, J. (2012). High activity of iron containing metal–organic-framework in acylation of p-xylene with benzoyl chloride. Catalysis Today, 179(1), 85-90. doi:10.1016/j.cattod.2011.08.001 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis & Catalysis, 352(17), 3022-3030. doi:10.1002/adsc.201000537 es_ES
dc.description.references JIANG, D., MALLAT, T., KRUMEICH, F., & BAIKER, A. (2008). Copper-based metal-organic framework for the facile ring-opening of epoxides. Journal of Catalysis, 257(2), 390-395. doi:10.1016/j.jcat.2008.05.021 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588 es_ES
dc.description.references Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Chevreau, H., Horcajada, P., Devic, T., Serre, C., & Garcia, H. (2012). Iron(iii) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catal. Sci. Technol., 2(2), 324-330. doi:10.1039/c2cy00376g es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042 es_ES
dc.description.references Biswas, S., Maes, M., Dhakshinamoorthy, A., Feyand, M., De Vos, D. E., Garcia, H., & Stock, N. (2012). Fuel purification, Lewis acid and aerobic oxidation catalysis performed by a microporous Co-BTT (BTT3− = 1,3,5-benzenetristetrazolate) framework having coordinatively unsaturated sites. Journal of Materials Chemistry, 22(20), 10200. doi:10.1039/c2jm15592c es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a es_ES
dc.description.references GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010 es_ES
dc.description.references Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie, 120(22), 4212-4216. doi:10.1002/ange.200705998 es_ES
dc.description.references Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998 es_ES
dc.description.references Pérez-Mayoral, E., & Čejka, J. (2010). [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction. ChemCatChem, 3(1), 157-159. doi:10.1002/cctc.201000201 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018 es_ES
dc.description.references Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y es_ES
dc.description.references Sharma, M. K., Singh, P. P., & Bharadwaj, P. K. (2011). Two-dimensional rhombus grid coordination polymer showing heterogeneous catalytic activities. Journal of Molecular Catalysis A: Chemical, 342-343, 6-10. doi:10.1016/j.molcata.2011.04.016 es_ES
dc.description.references Lin, X.-M., Li, T.-T., Chen, L.-F., Zhang, L., & Su, C.-Y. (2012). Two ligand-functionalized Pb(ii) metal–organic frameworks: structures and catalytic performances. Dalton Transactions, 41(34), 10422. doi:10.1039/c2dt30935a es_ES
dc.description.references Neogi, S., Sharma, M. K., & Bharadwaj, P. K. (2009). Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(II) centers. Journal of Molecular Catalysis A: Chemical, 299(1-2), 1-4. doi:10.1016/j.molcata.2008.10.008 es_ES
dc.description.references Fang, Q.-R., Yuan, D.-Q., Sculley, J., Li, J.-R., Han, Z.-B., & Zhou, H.-C. (2010). Functional Mesoporous Metal−Organic Frameworks for the Capture of Heavy Metal Ions and Size-Selective Catalysis. Inorganic Chemistry, 49(24), 11637-11642. doi:10.1021/ic101935f es_ES
dc.description.references Tran, U. P. N., Le, K. K. A., & Phan, N. T. S. (2011). Expanding Applications of Metal−Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction. ACS Catalysis, 1(2), 120-127. doi:10.1021/cs1000625 es_ES
dc.description.references Nguyen, L. T. L., Le, K. K. A., Truong, H. X., & Phan, N. T. S. (2012). Metal–organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catal. Sci. Technol., 2(3), 521-528. doi:10.1039/c1cy00386k es_ES
dc.description.references Liu, Y., Zhang, R., He, C., Dang, D., & Duan, C. (2010). A palladium(ii) triangle as building blocks of microporous molecular materials: structures and catalytic performance. Chem. Commun., 46(5), 746-748. doi:10.1039/b916916d es_ES
dc.description.references Juan-Alcañiz, J., Ramos-Fernandez, E. V., Lafont, U., Gascon, J., & Kapteijn, F. (2010). Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. Journal of Catalysis, 269(1), 229-241. doi:10.1016/j.jcat.2009.11.011 es_ES
dc.description.references Bromberg, L., Diao, Y., Wu, H., Speakman, S. A., & Hatton, T. A. (2012). Chromium(III) Terephthalate Metal Organic Framework (MIL-101): HF-Free Synthesis, Structure, Polyoxometalate Composites, and Catalytic Properties. Chemistry of Materials, 24(9), 1664-1675. doi:10.1021/cm2034382 es_ES
dc.description.references Wu, P., Wang, J., Li, Y., He, C., Xie, Z., & Duan, C. (2011). Luminescent Sensing and Catalytic Performances of a Multifunctional Lanthanide-Organic Framework Comprising a Triphenylamine Moiety. Advanced Functional Materials, 21(14), 2788-2794. doi:10.1002/adfm.201100115 es_ES
dc.description.references Das, R. K., Aijaz, A., Sharma, M. K., Lama, P., & Bharadwaj, P. K. (2012). Direct Crystallographic Observation of Catalytic Reactions inside the Pores of a Flexible Coordination Polymer. Chemistry - A European Journal, 18(22), 6866-6872. doi:10.1002/chem.201200046 es_ES
dc.description.references Kim, S.-N., Yang, S.-T., Kim, J., Park, J.-E., & Ahn, W.-S. (2012). Post-synthesis functionalization of MIL-101 using diethylenetriamine: a study on adsorption and catalysis. CrystEngComm, 14(12), 4142. doi:10.1039/c2ce06608d es_ES
dc.description.references Kasinathan, P., Seo, Y.-K., Shim, K.-E., Hwang, Y.-K., Lee, U.-H., Hwang, D.-W., … Chang, J.-S. (2011). Effect of Diamine in Amine-Functionalized MIL-101 for Knoevenagel Condensation. Bulletin of the Korean Chemical Society, 32(6), 2073-2075. doi:10.5012/bkcs.2011.32.6.2073 es_ES
dc.description.references Serra-Crespo, P., Ramos-Fernandez, E. V., Gascon, J., & Kapteijn, F. (2011). Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chemistry of Materials, 23(10), 2565-2572. doi:10.1021/cm103644b es_ES
dc.description.references Hartmann, M., & Fischer, M. (2012). Amino-functionalized basic catalysts with MIL-101 structure. Microporous and Mesoporous Materials, 164, 38-43. doi:10.1016/j.micromeso.2012.06.044 es_ES
dc.description.references Tan, Y., Fu, Z., & Zhang, J. (2011). A layered amino-functionalized zinc-terephthalate metal organic framework: Structure, characterization and catalytic performance for Knoevenagel condensation. Inorganic Chemistry Communications, 14(12), 1966-1970. doi:10.1016/j.inoche.2011.09.022 es_ES
dc.description.references Llabrés i Xamena, F. X., Cirujano, F. G., & Corma, A. (2012). An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous and Mesoporous Materials, 157, 112-117. doi:10.1016/j.micromeso.2011.12.058 es_ES
dc.description.references Canivet, J., Aguado, S., Daniel, C., & Farrusseng, D. (2011). Engineering the Environment of a Catalytic Metal-Organic Framework by Postsynthetic Hydrophobization. ChemCatChem, 3(4), 675-678. doi:10.1002/cctc.201000386 es_ES
dc.description.references Aguado, S., Canivet, J., & Farrusseng, D. (2011). Engineering structured MOF at nano and macroscales for catalysis and separation. Journal of Materials Chemistry, 21(21), 7582. doi:10.1039/c1jm10787a es_ES
dc.description.references Aguado, S., Canivet, J., Schuurman, Y., & Farrusseng, D. (2011). Tuning the activity by controlling the wettability of MOF eggshell catalysts: A quantitative structure–activity study. Journal of Catalysis, 284(2), 207-214. doi:10.1016/j.jcat.2011.10.002 es_ES
dc.description.references Pérez-Mayoral, E., Musilová, Z., Gil, B., Marszalek, B., Položij, M., Nachtigall, P., & Čejka, J. (2012). Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalton Transactions, 41(14), 4036. doi:10.1039/c2dt11978a es_ES
dc.description.references Shi, L.-X., & Wu, C.-D. (2011). A nanoporous metal–organic framework with accessible Cu2+ sites for the catalytic Henry reaction. Chemical Communications, 47(10), 2928. doi:10.1039/c0cc05074a es_ES
dc.description.references Pathan, N. B., Rahatgaonkar, A. M., & Chorghade, M. S. (2011). Metal-organic framework Cu3 (BTC)2(H2O)3 catalyzed Aldol synthesis of pyrimidine-chalcone hybrids. Catalysis Communications, 12(12), 1170-1176. doi:10.1016/j.catcom.2011.03.040 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Claisen-Schmidt Condensation Catalyzed by Metal-Organic Frameworks. Advanced Synthesis & Catalysis, 352(4), 711-717. doi:10.1002/adsc.200900747 es_ES
dc.description.references Pan, Y., Yuan, B., Li, Y., & He, D. (2010). Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chemical Communications, 46(13), 2280. doi:10.1039/b922061e es_ES
dc.description.references Li, B., Zhang, Y., Ma, D., Li, L., Li, G., Li, G., … Feng, S. (2012). A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chemical Communications, 48(49), 6151. doi:10.1039/c2cc32384b es_ES
dc.description.references Park, J., Li, J.-R., Chen, Y.-P., Yu, J., Yakovenko, A. A., Wang, Z. U., … Zhou, H.-C. (2012). A versatile metal–organic framework for carbon dioxide capture and cooperative catalysis. Chemical Communications, 48(80), 9995. doi:10.1039/c2cc34622b es_ES
dc.description.references Sen, R., Saha, D., & Koner, S. (2012). Controlled Construction of Metal-Organic Frameworks: Hydrothermal Synthesis, X-ray Structure, and Heterogeneous Catalytic Study. Chemistry - A European Journal, 18(19), 5979-5986. doi:10.1002/chem.201102953 es_ES
dc.description.references Saha, D., Sen, R., Maity, T., & Koner, S. (2012). Porous magnesium carboxylate framework: synthesis, X-ray crystal structure, gas adsorption property and heterogeneous catalytic aldol condensation reaction. Dalton Transactions, 41(24), 7399. doi:10.1039/c2dt00057a es_ES
dc.description.references Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d es_ES
dc.description.references Llabrés i Xamena, F. X., Corma, A., & Garcia, H. (2007). Applications for Metal−Organic Frameworks (MOFs) as Quantum Dot Semiconductors. The Journal of Physical Chemistry C, 111(1), 80-85. doi:10.1021/jp063600e es_ES
dc.description.references Cohen, S. M. (2011). Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chemical Reviews, 112(2), 970-1000. doi:10.1021/cr200179u es_ES
dc.description.references Bernt, S., Guillerm, V., Serre, C., & Stock, N. (2011). Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chemical Communications, 47(10), 2838. doi:10.1039/c0cc04526h es_ES
dc.description.references Hong, D.-Y., Hwang, Y. K., Serre, C., Férey, G., & Chang, J.-S. (2009). Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. Advanced Functional Materials, 19(10), 1537-1552. doi:10.1002/adfm.200801130 es_ES
dc.description.references Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 es_ES
dc.description.references Cortese, R., & Duca, D. (2011). A DFT study of IRMOF-3 catalysed Knoevenagel condensation. Physical Chemistry Chemical Physics, 13(35), 15995. doi:10.1039/c1cp21301f es_ES
dc.description.references Ravon, U., Domine, M. E., Gaudillère, C., Desmartin-Chomel, A., & Farrusseng, D. (2008). MOFs as acid catalysts with shape selectivity properties. New Journal of Chemistry, 32(6), 937. doi:10.1039/b803953b es_ES
dc.description.references Marco-Contelles, J., Pérez-Mayoral, E., Samadi, A., Carreiras, M. do C., & Soriano, E. (2009). Recent Advances in the Friedländer Reaction. Chemical Reviews, 109(6), 2652-2671. doi:10.1021/cr800482c es_ES
dc.description.references Camps, P., Formosa, X., Muñoz-Torrero, D., Petrignet, J., Badia, A., & Clos, M. V. (2005). Synthesis and Pharmacological Evaluation of Huprine−Tacrine Heterodimers:  Subnanomolar Dual Binding Site Acetylcholinesterase Inhibitors. Journal of Medicinal Chemistry, 48(6), 1701-1704. doi:10.1021/jm0496741 es_ES
dc.description.references Trost, B. M., & Yeh, V. S. C. (2002). A Dinuclear Zn Catalyst for the Asymmetric Nitroaldol (Henry) Reaction. Angewandte Chemie, 114(5), 889-891. doi:10.1002/1521-3757(20020301)114:5<889::aid-ange889>3.0.co;2-8 es_ES
dc.description.references Trost, B. M., & Yeh, V. S. C. (2002). A Dinuclear Zn Catalyst for the Asymmetric Nitroaldol (Henry) Reaction We thank the National Science Foundation and the National Institutes of Health, General Medical Sciences, for their generous support of our programs. Mass spectra were provided by the Mass Spectrometry Facility of the University of California, San Francisco, supported by the NIH Division of Research Resources. Angewandte Chemie International Edition, 41(5), 861. doi:10.1002/1521-3773(20020301)41:5<861::aid-anie861>3.0.co;2-v es_ES
dc.description.references Tian, J., Yamagiwa, N., Matsunaga, S., & Shibasaki, M. (2002). Angewandte Chemie, 114(19), 3788-3790. doi:10.1002/1521-3757(20021004)114:19<3788::aid-ange3788>3.0.co;2-1 es_ES
dc.description.references Tian, J., Yamagiwa, N., Matsunaga, S., & Shibasaki, M. (2002). An Asymmetric Cyanation Reaction and Sequential Asymmetric Cyanation–Nitroaldol Reaction Using a [YLi3{tris(binaphthoxide)}] Single Catalyst Component: Catalyst Tuning with Achiral Additives. Angewandte Chemie International Edition, 41(19), 3636-3638. doi:10.1002/1521-3773(20021004)41:19<3636::aid-anie3636>3.0.co;2-b es_ES
dc.description.references Jammi, S., & Punniyamurthy, T. (2009). Synthesis, Structure and Catalysis of Tetranuclear Copper(II) Open Cubane for Henry Reaction on Water. European Journal of Inorganic Chemistry, 2009(17), 2508-2511. doi:10.1002/ejic.200900141 es_ES
dc.description.references Savonnet, M., Aguado, S., Ravon, U., Bazer-Bachi, D., Lecocq, V., Bats, N., … Farrusseng, D. (2009). Solvent free base catalysis and transesterification over basic functionalised Metal-Organic Frameworks. Green Chemistry, 11(11), 1729. doi:10.1039/b915291c es_ES
dc.description.references Wang, C., Xie, Z., deKrafft, K. E., & Lin, W. (2011). Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 133(34), 13445-13454. doi:10.1021/ja203564w es_ES
dc.description.references Lin, X.-M., Li, T.-T., Wang, Y.-W., Zhang, L., & Su, C.-Y. (2012). Two ZnIIMetal-Organic Frameworks with Coordinatively Unsaturated Metal Sites: Structures, Adsorption, and Catalysis. Chemistry - An Asian Journal, 7(12), 2796-2804. doi:10.1002/asia.201200601 es_ES
dc.description.references Gu, J.-M., Kim, W.-S., & Huh, S. (2011). Size-dependent catalysis by DABCO-functionalized Zn-MOF with one-dimensional channels. Dalton Transactions, 40(41), 10826. doi:10.1039/c1dt11274k es_ES
dc.description.references Yu, H., Xie, J., Zhong, Y., Zhang, F., & Zhu, W. (2012). One-pot synthesis of nitroalkenes via the Henry reaction over amino-functionalized MIL-101 catalysts. Catalysis Communications, 29, 101-104. doi:10.1016/j.catcom.2012.09.032 es_ES
dc.description.references Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. ., & Pratap, R. (2004). Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorganic & Medicinal Chemistry, 12(5), 883-889. doi:10.1016/j.bmc.2003.12.026 es_ES
dc.description.references Goesten, M. G., Juan-Alcañiz, J., Ramos-Fernandez, E. V., Sai Sankar Gupta, K. B., Stavitski, E., van Bekkum, H., … Kapteijn, F. (2011). Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity. Journal of Catalysis, 281(1), 177-187. doi:10.1016/j.jcat.2011.04.015 es_ES
dc.description.references Saha, D., Maity, T., Sen, R., & Koner, S. (2012). Heterogeneous catalysis over a barium carboxylate framework compound: Synthesis, X-ray crystal structure and aldol condensation reaction. Polyhedron, 43(1), 63-70. doi:10.1016/j.poly.2012.05.043 es_ES
dc.description.references Maity, T., Saha, D., Das, S., & Koner, S. (2012). Barium Carboxylate Metal-Organic Framework - Synthesis, X-ray Crystal Structure, Photoluminescence and Catalytic Study. European Journal of Inorganic Chemistry, 2012(30), 4914-4920. doi:10.1002/ejic.201200417 es_ES
dc.description.references Savonnet, M., Canivet, J., Gambarelli, S., Dubois, L., Bazer-Bachi, D., Lecocq, V., … Farrusseng, D. (2012). Cu-mediated solid-state reaction in a post-functionalized metal–organic framework. CrystEngComm, 14(12), 4105. doi:10.1039/c2ce00017b es_ES
dc.description.references Canivet, J., & Farrusseng, D. (2011). Protection-deprotection Methods Applied to Metal-Organic Frameworks for the Design of Original Single-Site Catalysts. ChemCatChem, 3(5), 823-826. doi:10.1002/cctc.201100002 es_ES
dc.description.references Tanabe, K. K., & Cohen, S. M. (2011). Postsynthetic modification of metal–organic frameworks—a progress report. Chem. Soc. Rev., 40(2), 498-519. doi:10.1039/c0cs00031k es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem