Mostrar el registro sencillo del ítem
dc.contributor.author | Dhakshinamoorthy, Amarajothi | es_ES |
dc.contributor.author | Opanasenko, Maksym | es_ES |
dc.contributor.author | Cejka, Jirí | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2015-03-06T12:31:11Z | |
dc.date.issued | 2013-02-11 | |
dc.identifier.issn | 1615-4150 | |
dc.identifier.issn | 10.1002/adsc.201200618 | |
dc.identifier.uri | http://hdl.handle.net/10251/47831 | |
dc.description.abstract | [EN] This review summarizes the use of metal organic frameworks (MOFs) as solid catalysts for condensation reactions. After an introductory section, in which condensation reactions are generally presented, a list of the MOFs employed as condensation catalyst is given. The main part of the present review is organized according to the use of MOFs as solid acids, solid bases or as bi-functional solids containing both acid and basic sites. Throughout the review, the emphasis has been made on discussing the stability of the MOFs, their reusability and in providing a comparison of the performance of MOFs with respect to other homogeneous and heterogeneous catalysts. Finally, we summarize the current state-of-the-art and provide our view on future trends and developments in this field. | es_ES |
dc.description.sponsorship | Financial support by the Spanish DGI (CTQ 2009-11587, CTQ 2010-18671 and CONSOLIDER MULTICAT) is gratefully acknowledged. The research leading to these results has received funding from the European Communitys Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 228862. J.Cˇ. thanks the Czech Science Foundation for financial support (Centre of Excellence – P106/12/G015) | |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Advanced Synthesis and Catalysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Aldol condensation | es_ES |
dc.subject | Green chemistry | es_ES |
dc.subject | Henry reaction | es_ES |
dc.subject | Heterogeneous catalysis | es_ES |
dc.subject | Knoevenagel condensation | es_ES |
dc.subject | Metal organic frameworks | es_ES |
dc.subject | Pechmann condensation | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/adsc.201200618 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2009-11587/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GACR//P106%2F12%2FG015/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Dhakshinamoorthy, A.; Opanasenko, M.; Cejka, J.; García Gómez, H. (2013). Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups. Advanced Synthesis and Catalysis. 355(2):247-268. https://doi.org/10.1002/adsc.201200618 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/adsc.201200618 | es_ES |
dc.description.upvformatpinicio | 247 | es_ES |
dc.description.upvformatpfin | 268 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 355 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 240569 | |
dc.identifier.eissn | 1615-4169 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Czech Science Foundation | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Freeman, F. (1980). Properties and reactions of ylidenemalononitriles. Chemical Reviews, 80(4), 329-350. doi:10.1021/cr60326a004 | es_ES |
dc.description.references | Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e | es_ES |
dc.description.references | Sheldon, R. A. (1997). Catalysis: The Key to Waste Minimization. Journal of Chemical Technology & Biotechnology, 68(4), 381-388. doi:10.1002/(sici)1097-4660(199704)68:4<381::aid-jctb620>3.0.co;2-3 | es_ES |
dc.description.references | Karmakar, B., Chowdhury, B., & Banerji, J. (2010). Mesoporous titanosilicate Ti-TUD-1 catalyzed Knoevenagel reaction: An efficient green synthesis of trisubstituted electrophilic olefins. Catalysis Communications, 11(7), 601-605. doi:10.1016/j.catcom.2010.01.003 | es_ES |
dc.description.references | Parida, K. M., & Rath, D. (2009). Amine functionalized MCM-41: An active and reusable catalyst for Knoevenagel condensation reaction. Journal of Molecular Catalysis A: Chemical, 310(1-2), 93-100. doi:10.1016/j.molcata.2009.06.001 | es_ES |
dc.description.references | Martins, L., Hölderich, W., Hammer, P., & Cardoso, D. (2010). Preparation of different basic Si–MCM-41 catalysts and application in the Knoevenagel and Claisen–Schmidt condensation reactions. Journal of Catalysis, 271(2), 220-227. doi:10.1016/j.jcat.2010.01.015 | es_ES |
dc.description.references | Gutiérrez-Sánchez, C., Calvino-Casilda, V., Pérez-Mayoral, E., Martín-Aranda, R. M., López-Peinado, A. J., Bejblová, M., & Čejka, J. (2008). Coumarins Preparation by Pechmann Reaction Under Ultrasound Irradiation. Synthesis of Hymecromone as Insecticide Intermediate. Catalysis Letters, 128(3-4), 318-322. doi:10.1007/s10562-008-9709-9 | es_ES |
dc.description.references | Climent, M. J., Corma, A., Iborra, S., & Velty, A. (2002). Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs. Journal of Molecular Catalysis A: Chemical, 182-183, 327-342. doi:10.1016/s1381-1169(01)00501-5 | es_ES |
dc.description.references | Boronat, M., Climent, M. J., Corma, A., Iborra, S., Montón, R., & Sabater, M. J. (2010). Bifunctional Acid-Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 16(4), 1221-1231. doi:10.1002/chem.200901519 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g | es_ES |
dc.description.references | Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248 | es_ES |
dc.description.references | Eddaoudi, M., Li, H., & Yaghi, O. M. (2000). Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties. Journal of the American Chemical Society, 122(7), 1391-1397. doi:10.1021/ja9933386 | es_ES |
dc.description.references | Kitagawa, S., Kitaura, R., & Noro, S. (2004). Funktionale poröse Koordinationspolymere. Angewandte Chemie, 116(18), 2388-2430. doi:10.1002/ange.200300610 | es_ES |
dc.description.references | Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 | es_ES |
dc.description.references | Kitagawa, S., Noro, S., & Nakamura, T. (2006). Pore surface engineering of microporous coordination polymers. Chem. Commun., (7), 701-707. doi:10.1039/b511728c | es_ES |
dc.description.references | Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications, 48(92), 11275. doi:10.1039/c2cc34329k | es_ES |
dc.description.references | Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c | es_ES |
dc.description.references | Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063 | es_ES |
dc.description.references | Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 | es_ES |
dc.description.references | Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f | es_ES |
dc.description.references | Wang, Z., Chen, G., & Ding, K. (2009). Self-Supported Catalysts. Chemical Reviews, 109(2), 322-359. doi:10.1021/cr800406u | es_ES |
dc.description.references | Ranocchiari, M., & Bokhoven, J. A. van. (2011). Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics, 13(14), 6388. doi:10.1039/c0cp02394a | es_ES |
dc.description.references | Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e | es_ES |
dc.description.references | Kurfiřtová, L., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., & Čejka, J. (2012). High activity of iron containing metal–organic-framework in acylation of p-xylene with benzoyl chloride. Catalysis Today, 179(1), 85-90. doi:10.1016/j.cattod.2011.08.001 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis & Catalysis, 352(17), 3022-3030. doi:10.1002/adsc.201000537 | es_ES |
dc.description.references | JIANG, D., MALLAT, T., KRUMEICH, F., & BAIKER, A. (2008). Copper-based metal-organic framework for the facile ring-opening of epoxides. Journal of Catalysis, 257(2), 390-395. doi:10.1016/j.jcat.2008.05.021 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588 | es_ES |
dc.description.references | Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Chevreau, H., Horcajada, P., Devic, T., Serre, C., & Garcia, H. (2012). Iron(iii) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catal. Sci. Technol., 2(2), 324-330. doi:10.1039/c2cy00376g | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042 | es_ES |
dc.description.references | Biswas, S., Maes, M., Dhakshinamoorthy, A., Feyand, M., De Vos, D. E., Garcia, H., & Stock, N. (2012). Fuel purification, Lewis acid and aerobic oxidation catalysis performed by a microporous Co-BTT (BTT3− = 1,3,5-benzenetristetrazolate) framework having coordinatively unsaturated sites. Journal of Materials Chemistry, 22(20), 10200. doi:10.1039/c2jm15592c | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a | es_ES |
dc.description.references | GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010 | es_ES |
dc.description.references | Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie, 120(22), 4212-4216. doi:10.1002/ange.200705998 | es_ES |
dc.description.references | Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998 | es_ES |
dc.description.references | Pérez-Mayoral, E., & Čejka, J. (2010). [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction. ChemCatChem, 3(1), 157-159. doi:10.1002/cctc.201000201 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018 | es_ES |
dc.description.references | Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y | es_ES |
dc.description.references | Sharma, M. K., Singh, P. P., & Bharadwaj, P. K. (2011). Two-dimensional rhombus grid coordination polymer showing heterogeneous catalytic activities. Journal of Molecular Catalysis A: Chemical, 342-343, 6-10. doi:10.1016/j.molcata.2011.04.016 | es_ES |
dc.description.references | Lin, X.-M., Li, T.-T., Chen, L.-F., Zhang, L., & Su, C.-Y. (2012). Two ligand-functionalized Pb(ii) metal–organic frameworks: structures and catalytic performances. Dalton Transactions, 41(34), 10422. doi:10.1039/c2dt30935a | es_ES |
dc.description.references | Neogi, S., Sharma, M. K., & Bharadwaj, P. K. (2009). Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(II) centers. Journal of Molecular Catalysis A: Chemical, 299(1-2), 1-4. doi:10.1016/j.molcata.2008.10.008 | es_ES |
dc.description.references | Fang, Q.-R., Yuan, D.-Q., Sculley, J., Li, J.-R., Han, Z.-B., & Zhou, H.-C. (2010). Functional Mesoporous Metal−Organic Frameworks for the Capture of Heavy Metal Ions and Size-Selective Catalysis. Inorganic Chemistry, 49(24), 11637-11642. doi:10.1021/ic101935f | es_ES |
dc.description.references | Tran, U. P. N., Le, K. K. A., & Phan, N. T. S. (2011). Expanding Applications of Metal−Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction. ACS Catalysis, 1(2), 120-127. doi:10.1021/cs1000625 | es_ES |
dc.description.references | Nguyen, L. T. L., Le, K. K. A., Truong, H. X., & Phan, N. T. S. (2012). Metal–organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catal. Sci. Technol., 2(3), 521-528. doi:10.1039/c1cy00386k | es_ES |
dc.description.references | Liu, Y., Zhang, R., He, C., Dang, D., & Duan, C. (2010). A palladium(ii) triangle as building blocks of microporous molecular materials: structures and catalytic performance. Chem. Commun., 46(5), 746-748. doi:10.1039/b916916d | es_ES |
dc.description.references | Juan-Alcañiz, J., Ramos-Fernandez, E. V., Lafont, U., Gascon, J., & Kapteijn, F. (2010). Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. Journal of Catalysis, 269(1), 229-241. doi:10.1016/j.jcat.2009.11.011 | es_ES |
dc.description.references | Bromberg, L., Diao, Y., Wu, H., Speakman, S. A., & Hatton, T. A. (2012). Chromium(III) Terephthalate Metal Organic Framework (MIL-101): HF-Free Synthesis, Structure, Polyoxometalate Composites, and Catalytic Properties. Chemistry of Materials, 24(9), 1664-1675. doi:10.1021/cm2034382 | es_ES |
dc.description.references | Wu, P., Wang, J., Li, Y., He, C., Xie, Z., & Duan, C. (2011). Luminescent Sensing and Catalytic Performances of a Multifunctional Lanthanide-Organic Framework Comprising a Triphenylamine Moiety. Advanced Functional Materials, 21(14), 2788-2794. doi:10.1002/adfm.201100115 | es_ES |
dc.description.references | Das, R. K., Aijaz, A., Sharma, M. K., Lama, P., & Bharadwaj, P. K. (2012). Direct Crystallographic Observation of Catalytic Reactions inside the Pores of a Flexible Coordination Polymer. Chemistry - A European Journal, 18(22), 6866-6872. doi:10.1002/chem.201200046 | es_ES |
dc.description.references | Kim, S.-N., Yang, S.-T., Kim, J., Park, J.-E., & Ahn, W.-S. (2012). Post-synthesis functionalization of MIL-101 using diethylenetriamine: a study on adsorption and catalysis. CrystEngComm, 14(12), 4142. doi:10.1039/c2ce06608d | es_ES |
dc.description.references | Kasinathan, P., Seo, Y.-K., Shim, K.-E., Hwang, Y.-K., Lee, U.-H., Hwang, D.-W., … Chang, J.-S. (2011). Effect of Diamine in Amine-Functionalized MIL-101 for Knoevenagel Condensation. Bulletin of the Korean Chemical Society, 32(6), 2073-2075. doi:10.5012/bkcs.2011.32.6.2073 | es_ES |
dc.description.references | Serra-Crespo, P., Ramos-Fernandez, E. V., Gascon, J., & Kapteijn, F. (2011). Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chemistry of Materials, 23(10), 2565-2572. doi:10.1021/cm103644b | es_ES |
dc.description.references | Hartmann, M., & Fischer, M. (2012). Amino-functionalized basic catalysts with MIL-101 structure. Microporous and Mesoporous Materials, 164, 38-43. doi:10.1016/j.micromeso.2012.06.044 | es_ES |
dc.description.references | Tan, Y., Fu, Z., & Zhang, J. (2011). A layered amino-functionalized zinc-terephthalate metal organic framework: Structure, characterization and catalytic performance for Knoevenagel condensation. Inorganic Chemistry Communications, 14(12), 1966-1970. doi:10.1016/j.inoche.2011.09.022 | es_ES |
dc.description.references | Llabrés i Xamena, F. X., Cirujano, F. G., & Corma, A. (2012). An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous and Mesoporous Materials, 157, 112-117. doi:10.1016/j.micromeso.2011.12.058 | es_ES |
dc.description.references | Canivet, J., Aguado, S., Daniel, C., & Farrusseng, D. (2011). Engineering the Environment of a Catalytic Metal-Organic Framework by Postsynthetic Hydrophobization. ChemCatChem, 3(4), 675-678. doi:10.1002/cctc.201000386 | es_ES |
dc.description.references | Aguado, S., Canivet, J., & Farrusseng, D. (2011). Engineering structured MOF at nano and macroscales for catalysis and separation. Journal of Materials Chemistry, 21(21), 7582. doi:10.1039/c1jm10787a | es_ES |
dc.description.references | Aguado, S., Canivet, J., Schuurman, Y., & Farrusseng, D. (2011). Tuning the activity by controlling the wettability of MOF eggshell catalysts: A quantitative structure–activity study. Journal of Catalysis, 284(2), 207-214. doi:10.1016/j.jcat.2011.10.002 | es_ES |
dc.description.references | Pérez-Mayoral, E., Musilová, Z., Gil, B., Marszalek, B., Položij, M., Nachtigall, P., & Čejka, J. (2012). Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalton Transactions, 41(14), 4036. doi:10.1039/c2dt11978a | es_ES |
dc.description.references | Shi, L.-X., & Wu, C.-D. (2011). A nanoporous metal–organic framework with accessible Cu2+ sites for the catalytic Henry reaction. Chemical Communications, 47(10), 2928. doi:10.1039/c0cc05074a | es_ES |
dc.description.references | Pathan, N. B., Rahatgaonkar, A. M., & Chorghade, M. S. (2011). Metal-organic framework Cu3 (BTC)2(H2O)3 catalyzed Aldol synthesis of pyrimidine-chalcone hybrids. Catalysis Communications, 12(12), 1170-1176. doi:10.1016/j.catcom.2011.03.040 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Claisen-Schmidt Condensation Catalyzed by Metal-Organic Frameworks. Advanced Synthesis & Catalysis, 352(4), 711-717. doi:10.1002/adsc.200900747 | es_ES |
dc.description.references | Pan, Y., Yuan, B., Li, Y., & He, D. (2010). Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chemical Communications, 46(13), 2280. doi:10.1039/b922061e | es_ES |
dc.description.references | Li, B., Zhang, Y., Ma, D., Li, L., Li, G., Li, G., … Feng, S. (2012). A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chemical Communications, 48(49), 6151. doi:10.1039/c2cc32384b | es_ES |
dc.description.references | Park, J., Li, J.-R., Chen, Y.-P., Yu, J., Yakovenko, A. A., Wang, Z. U., … Zhou, H.-C. (2012). A versatile metal–organic framework for carbon dioxide capture and cooperative catalysis. Chemical Communications, 48(80), 9995. doi:10.1039/c2cc34622b | es_ES |
dc.description.references | Sen, R., Saha, D., & Koner, S. (2012). Controlled Construction of Metal-Organic Frameworks: Hydrothermal Synthesis, X-ray Structure, and Heterogeneous Catalytic Study. Chemistry - A European Journal, 18(19), 5979-5986. doi:10.1002/chem.201102953 | es_ES |
dc.description.references | Saha, D., Sen, R., Maity, T., & Koner, S. (2012). Porous magnesium carboxylate framework: synthesis, X-ray crystal structure, gas adsorption property and heterogeneous catalytic aldol condensation reaction. Dalton Transactions, 41(24), 7399. doi:10.1039/c2dt00057a | es_ES |
dc.description.references | Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d | es_ES |
dc.description.references | Llabrés i Xamena, F. X., Corma, A., & Garcia, H. (2007). Applications for Metal−Organic Frameworks (MOFs) as Quantum Dot Semiconductors. The Journal of Physical Chemistry C, 111(1), 80-85. doi:10.1021/jp063600e | es_ES |
dc.description.references | Cohen, S. M. (2011). Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chemical Reviews, 112(2), 970-1000. doi:10.1021/cr200179u | es_ES |
dc.description.references | Bernt, S., Guillerm, V., Serre, C., & Stock, N. (2011). Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chemical Communications, 47(10), 2838. doi:10.1039/c0cc04526h | es_ES |
dc.description.references | Hong, D.-Y., Hwang, Y. K., Serre, C., Férey, G., & Chang, J.-S. (2009). Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. Advanced Functional Materials, 19(10), 1537-1552. doi:10.1002/adfm.200801130 | es_ES |
dc.description.references | Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 | es_ES |
dc.description.references | Cortese, R., & Duca, D. (2011). A DFT study of IRMOF-3 catalysed Knoevenagel condensation. Physical Chemistry Chemical Physics, 13(35), 15995. doi:10.1039/c1cp21301f | es_ES |
dc.description.references | Ravon, U., Domine, M. E., Gaudillère, C., Desmartin-Chomel, A., & Farrusseng, D. (2008). MOFs as acid catalysts with shape selectivity properties. New Journal of Chemistry, 32(6), 937. doi:10.1039/b803953b | es_ES |
dc.description.references | Marco-Contelles, J., Pérez-Mayoral, E., Samadi, A., Carreiras, M. do C., & Soriano, E. (2009). Recent Advances in the Friedländer Reaction. Chemical Reviews, 109(6), 2652-2671. doi:10.1021/cr800482c | es_ES |
dc.description.references | Camps, P., Formosa, X., Muñoz-Torrero, D., Petrignet, J., Badia, A., & Clos, M. V. (2005). Synthesis and Pharmacological Evaluation of Huprine−Tacrine Heterodimers: Subnanomolar Dual Binding Site Acetylcholinesterase Inhibitors. Journal of Medicinal Chemistry, 48(6), 1701-1704. doi:10.1021/jm0496741 | es_ES |
dc.description.references | Trost, B. M., & Yeh, V. S. C. (2002). A Dinuclear Zn Catalyst for the Asymmetric Nitroaldol (Henry) Reaction. Angewandte Chemie, 114(5), 889-891. doi:10.1002/1521-3757(20020301)114:5<889::aid-ange889>3.0.co;2-8 | es_ES |
dc.description.references | Trost, B. M., & Yeh, V. S. C. (2002). A Dinuclear Zn Catalyst for the Asymmetric Nitroaldol (Henry) Reaction We thank the National Science Foundation and the National Institutes of Health, General Medical Sciences, for their generous support of our programs. Mass spectra were provided by the Mass Spectrometry Facility of the University of California, San Francisco, supported by the NIH Division of Research Resources. Angewandte Chemie International Edition, 41(5), 861. doi:10.1002/1521-3773(20020301)41:5<861::aid-anie861>3.0.co;2-v | es_ES |
dc.description.references | Tian, J., Yamagiwa, N., Matsunaga, S., & Shibasaki, M. (2002). Angewandte Chemie, 114(19), 3788-3790. doi:10.1002/1521-3757(20021004)114:19<3788::aid-ange3788>3.0.co;2-1 | es_ES |
dc.description.references | Tian, J., Yamagiwa, N., Matsunaga, S., & Shibasaki, M. (2002). An Asymmetric Cyanation Reaction and Sequential Asymmetric Cyanation–Nitroaldol Reaction Using a [YLi3{tris(binaphthoxide)}] Single Catalyst Component: Catalyst Tuning with Achiral Additives. Angewandte Chemie International Edition, 41(19), 3636-3638. doi:10.1002/1521-3773(20021004)41:19<3636::aid-anie3636>3.0.co;2-b | es_ES |
dc.description.references | Jammi, S., & Punniyamurthy, T. (2009). Synthesis, Structure and Catalysis of Tetranuclear Copper(II) Open Cubane for Henry Reaction on Water. European Journal of Inorganic Chemistry, 2009(17), 2508-2511. doi:10.1002/ejic.200900141 | es_ES |
dc.description.references | Savonnet, M., Aguado, S., Ravon, U., Bazer-Bachi, D., Lecocq, V., Bats, N., … Farrusseng, D. (2009). Solvent free base catalysis and transesterification over basic functionalised Metal-Organic Frameworks. Green Chemistry, 11(11), 1729. doi:10.1039/b915291c | es_ES |
dc.description.references | Wang, C., Xie, Z., deKrafft, K. E., & Lin, W. (2011). Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 133(34), 13445-13454. doi:10.1021/ja203564w | es_ES |
dc.description.references | Lin, X.-M., Li, T.-T., Wang, Y.-W., Zhang, L., & Su, C.-Y. (2012). Two ZnIIMetal-Organic Frameworks with Coordinatively Unsaturated Metal Sites: Structures, Adsorption, and Catalysis. Chemistry - An Asian Journal, 7(12), 2796-2804. doi:10.1002/asia.201200601 | es_ES |
dc.description.references | Gu, J.-M., Kim, W.-S., & Huh, S. (2011). Size-dependent catalysis by DABCO-functionalized Zn-MOF with one-dimensional channels. Dalton Transactions, 40(41), 10826. doi:10.1039/c1dt11274k | es_ES |
dc.description.references | Yu, H., Xie, J., Zhong, Y., Zhang, F., & Zhu, W. (2012). One-pot synthesis of nitroalkenes via the Henry reaction over amino-functionalized MIL-101 catalysts. Catalysis Communications, 29, 101-104. doi:10.1016/j.catcom.2012.09.032 | es_ES |
dc.description.references | Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. ., & Pratap, R. (2004). Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorganic & Medicinal Chemistry, 12(5), 883-889. doi:10.1016/j.bmc.2003.12.026 | es_ES |
dc.description.references | Goesten, M. G., Juan-Alcañiz, J., Ramos-Fernandez, E. V., Sai Sankar Gupta, K. B., Stavitski, E., van Bekkum, H., … Kapteijn, F. (2011). Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity. Journal of Catalysis, 281(1), 177-187. doi:10.1016/j.jcat.2011.04.015 | es_ES |
dc.description.references | Saha, D., Maity, T., Sen, R., & Koner, S. (2012). Heterogeneous catalysis over a barium carboxylate framework compound: Synthesis, X-ray crystal structure and aldol condensation reaction. Polyhedron, 43(1), 63-70. doi:10.1016/j.poly.2012.05.043 | es_ES |
dc.description.references | Maity, T., Saha, D., Das, S., & Koner, S. (2012). Barium Carboxylate Metal-Organic Framework - Synthesis, X-ray Crystal Structure, Photoluminescence and Catalytic Study. European Journal of Inorganic Chemistry, 2012(30), 4914-4920. doi:10.1002/ejic.201200417 | es_ES |
dc.description.references | Savonnet, M., Canivet, J., Gambarelli, S., Dubois, L., Bazer-Bachi, D., Lecocq, V., … Farrusseng, D. (2012). Cu-mediated solid-state reaction in a post-functionalized metal–organic framework. CrystEngComm, 14(12), 4105. doi:10.1039/c2ce00017b | es_ES |
dc.description.references | Canivet, J., & Farrusseng, D. (2011). Protection-deprotection Methods Applied to Metal-Organic Frameworks for the Design of Original Single-Site Catalysts. ChemCatChem, 3(5), 823-826. doi:10.1002/cctc.201100002 | es_ES |
dc.description.references | Tanabe, K. K., & Cohen, S. M. (2011). Postsynthetic modification of metal–organic frameworks—a progress report. Chem. Soc. Rev., 40(2), 498-519. doi:10.1039/c0cs00031k | es_ES |