- -

Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups

Mostrar el registro completo del ítem

Dhakshinamoorthy, A.; Opanasenko, M.; Cejka, J.; García Gómez, H. (2013). Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups. Advanced Synthesis and Catalysis. 355(2):247-268. https://doi.org/10.1002/adsc.201200618

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47831

Ficheros en el ítem

Metadatos del ítem

Título: Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups
Autor: Dhakshinamoorthy, Amarajothi Opanasenko, Maksym Cejka, Jirí García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] This review summarizes the use of metal organic frameworks (MOFs) as solid catalysts for condensation reactions. After an introductory section, in which condensation reactions are generally presented, a list of the ...[+]
Palabras clave: Aldol condensation , Green chemistry , Henry reaction , Heterogeneous catalysis , Knoevenagel condensation , Metal organic frameworks , Pechmann condensation
Derechos de uso: Cerrado
Fuente:
Advanced Synthesis and Catalysis. (issn: 1615-4150 ) (eissn: 1615-4169 )
DOI: 10.1002/adsc.201200618
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/adsc.201200618
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/
info:eu-repo/grantAgreement/MICINN//CTQ2009-11587/
info:eu-repo/grantAgreement/GACR//P106%2F12%2FG015/
info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/
Agradecimientos:
Financial support by the Spanish DGI (CTQ 2009-11587, CTQ 2010-18671 and CONSOLIDER MULTICAT) is gratefully acknowledged. The research leading to these results has received funding from the European Communitys Seventh Framework ...[+]
Tipo: Artículo

References

Freeman, F. (1980). Properties and reactions of ylidenemalononitriles. Chemical Reviews, 80(4), 329-350. doi:10.1021/cr60326a004

Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e

Sheldon, R. A. (1997). Catalysis: The Key to Waste Minimization. Journal of Chemical Technology & Biotechnology, 68(4), 381-388. doi:10.1002/(sici)1097-4660(199704)68:4<381::aid-jctb620>3.0.co;2-3 [+]
Freeman, F. (1980). Properties and reactions of ylidenemalononitriles. Chemical Reviews, 80(4), 329-350. doi:10.1021/cr60326a004

Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e

Sheldon, R. A. (1997). Catalysis: The Key to Waste Minimization. Journal of Chemical Technology & Biotechnology, 68(4), 381-388. doi:10.1002/(sici)1097-4660(199704)68:4<381::aid-jctb620>3.0.co;2-3

Karmakar, B., Chowdhury, B., & Banerji, J. (2010). Mesoporous titanosilicate Ti-TUD-1 catalyzed Knoevenagel reaction: An efficient green synthesis of trisubstituted electrophilic olefins. Catalysis Communications, 11(7), 601-605. doi:10.1016/j.catcom.2010.01.003

Parida, K. M., & Rath, D. (2009). Amine functionalized MCM-41: An active and reusable catalyst for Knoevenagel condensation reaction. Journal of Molecular Catalysis A: Chemical, 310(1-2), 93-100. doi:10.1016/j.molcata.2009.06.001

Martins, L., Hölderich, W., Hammer, P., & Cardoso, D. (2010). Preparation of different basic Si–MCM-41 catalysts and application in the Knoevenagel and Claisen–Schmidt condensation reactions. Journal of Catalysis, 271(2), 220-227. doi:10.1016/j.jcat.2010.01.015

Gutiérrez-Sánchez, C., Calvino-Casilda, V., Pérez-Mayoral, E., Martín-Aranda, R. M., López-Peinado, A. J., Bejblová, M., & Čejka, J. (2008). Coumarins Preparation by Pechmann Reaction Under Ultrasound Irradiation. Synthesis of Hymecromone as Insecticide Intermediate. Catalysis Letters, 128(3-4), 318-322. doi:10.1007/s10562-008-9709-9

Climent, M. J., Corma, A., Iborra, S., & Velty, A. (2002). Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs. Journal of Molecular Catalysis A: Chemical, 182-183, 327-342. doi:10.1016/s1381-1169(01)00501-5

Boronat, M., Climent, M. J., Corma, A., Iborra, S., Montón, R., & Sabater, M. J. (2010). Bifunctional Acid-Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 16(4), 1221-1231. doi:10.1002/chem.200901519

Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g

Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248

Eddaoudi, M., Li, H., & Yaghi, O. M. (2000). Highly Porous and Stable Metal−Organic Frameworks:  Structure Design and Sorption Properties. Journal of the American Chemical Society, 122(7), 1391-1397. doi:10.1021/ja9933386

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Funktionale poröse Koordinationspolymere. Angewandte Chemie, 116(18), 2388-2430. doi:10.1002/ange.200300610

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610

Kitagawa, S., Noro, S., & Nakamura, T. (2006). Pore surface engineering of microporous coordination polymers. Chem. Commun., (7), 701-707. doi:10.1039/b511728c

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications, 48(92), 11275. doi:10.1039/c2cc34329k

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f

Wang, Z., Chen, G., & Ding, K. (2009). Self-Supported Catalysts. Chemical Reviews, 109(2), 322-359. doi:10.1021/cr800406u

Ranocchiari, M., & Bokhoven, J. A. van. (2011). Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics, 13(14), 6388. doi:10.1039/c0cp02394a

Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e

Kurfiřtová, L., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., & Čejka, J. (2012). High activity of iron containing metal–organic-framework in acylation of p-xylene with benzoyl chloride. Catalysis Today, 179(1), 85-90. doi:10.1016/j.cattod.2011.08.001

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis & Catalysis, 352(17), 3022-3030. doi:10.1002/adsc.201000537

JIANG, D., MALLAT, T., KRUMEICH, F., & BAIKER, A. (2008). Copper-based metal-organic framework for the facile ring-opening of epoxides. Journal of Catalysis, 257(2), 390-395. doi:10.1016/j.jcat.2008.05.021

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588

Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220

Dhakshinamoorthy, A., Alvaro, M., Chevreau, H., Horcajada, P., Devic, T., Serre, C., & Garcia, H. (2012). Iron(iii) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catal. Sci. Technol., 2(2), 324-330. doi:10.1039/c2cy00376g

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042

Biswas, S., Maes, M., Dhakshinamoorthy, A., Feyand, M., De Vos, D. E., Garcia, H., & Stock, N. (2012). Fuel purification, Lewis acid and aerobic oxidation catalysis performed by a microporous Co-BTT (BTT3− = 1,3,5-benzenetristetrazolate) framework having coordinatively unsaturated sites. Journal of Materials Chemistry, 22(20), 10200. doi:10.1039/c2jm15592c

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a

GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010

Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie, 120(22), 4212-4216. doi:10.1002/ange.200705998

Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998

Pérez-Mayoral, E., & Čejka, J. (2010). [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction. ChemCatChem, 3(1), 157-159. doi:10.1002/cctc.201000201

Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018

Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y

Sharma, M. K., Singh, P. P., & Bharadwaj, P. K. (2011). Two-dimensional rhombus grid coordination polymer showing heterogeneous catalytic activities. Journal of Molecular Catalysis A: Chemical, 342-343, 6-10. doi:10.1016/j.molcata.2011.04.016

Lin, X.-M., Li, T.-T., Chen, L.-F., Zhang, L., & Su, C.-Y. (2012). Two ligand-functionalized Pb(ii) metal–organic frameworks: structures and catalytic performances. Dalton Transactions, 41(34), 10422. doi:10.1039/c2dt30935a

Neogi, S., Sharma, M. K., & Bharadwaj, P. K. (2009). Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(II) centers. Journal of Molecular Catalysis A: Chemical, 299(1-2), 1-4. doi:10.1016/j.molcata.2008.10.008

Fang, Q.-R., Yuan, D.-Q., Sculley, J., Li, J.-R., Han, Z.-B., & Zhou, H.-C. (2010). Functional Mesoporous Metal−Organic Frameworks for the Capture of Heavy Metal Ions and Size-Selective Catalysis. Inorganic Chemistry, 49(24), 11637-11642. doi:10.1021/ic101935f

Tran, U. P. N., Le, K. K. A., & Phan, N. T. S. (2011). Expanding Applications of Metal−Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction. ACS Catalysis, 1(2), 120-127. doi:10.1021/cs1000625

Nguyen, L. T. L., Le, K. K. A., Truong, H. X., & Phan, N. T. S. (2012). Metal–organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catal. Sci. Technol., 2(3), 521-528. doi:10.1039/c1cy00386k

Liu, Y., Zhang, R., He, C., Dang, D., & Duan, C. (2010). A palladium(ii) triangle as building blocks of microporous molecular materials: structures and catalytic performance. Chem. Commun., 46(5), 746-748. doi:10.1039/b916916d

Juan-Alcañiz, J., Ramos-Fernandez, E. V., Lafont, U., Gascon, J., & Kapteijn, F. (2010). Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. Journal of Catalysis, 269(1), 229-241. doi:10.1016/j.jcat.2009.11.011

Bromberg, L., Diao, Y., Wu, H., Speakman, S. A., & Hatton, T. A. (2012). Chromium(III) Terephthalate Metal Organic Framework (MIL-101): HF-Free Synthesis, Structure, Polyoxometalate Composites, and Catalytic Properties. Chemistry of Materials, 24(9), 1664-1675. doi:10.1021/cm2034382

Wu, P., Wang, J., Li, Y., He, C., Xie, Z., & Duan, C. (2011). Luminescent Sensing and Catalytic Performances of a Multifunctional Lanthanide-Organic Framework Comprising a Triphenylamine Moiety. Advanced Functional Materials, 21(14), 2788-2794. doi:10.1002/adfm.201100115

Das, R. K., Aijaz, A., Sharma, M. K., Lama, P., & Bharadwaj, P. K. (2012). Direct Crystallographic Observation of Catalytic Reactions inside the Pores of a Flexible Coordination Polymer. Chemistry - A European Journal, 18(22), 6866-6872. doi:10.1002/chem.201200046

Kim, S.-N., Yang, S.-T., Kim, J., Park, J.-E., & Ahn, W.-S. (2012). Post-synthesis functionalization of MIL-101 using diethylenetriamine: a study on adsorption and catalysis. CrystEngComm, 14(12), 4142. doi:10.1039/c2ce06608d

Kasinathan, P., Seo, Y.-K., Shim, K.-E., Hwang, Y.-K., Lee, U.-H., Hwang, D.-W., … Chang, J.-S. (2011). Effect of Diamine in Amine-Functionalized MIL-101 for Knoevenagel Condensation. Bulletin of the Korean Chemical Society, 32(6), 2073-2075. doi:10.5012/bkcs.2011.32.6.2073

Serra-Crespo, P., Ramos-Fernandez, E. V., Gascon, J., & Kapteijn, F. (2011). Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chemistry of Materials, 23(10), 2565-2572. doi:10.1021/cm103644b

Hartmann, M., & Fischer, M. (2012). Amino-functionalized basic catalysts with MIL-101 structure. Microporous and Mesoporous Materials, 164, 38-43. doi:10.1016/j.micromeso.2012.06.044

Tan, Y., Fu, Z., & Zhang, J. (2011). A layered amino-functionalized zinc-terephthalate metal organic framework: Structure, characterization and catalytic performance for Knoevenagel condensation. Inorganic Chemistry Communications, 14(12), 1966-1970. doi:10.1016/j.inoche.2011.09.022

Llabrés i Xamena, F. X., Cirujano, F. G., & Corma, A. (2012). An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous and Mesoporous Materials, 157, 112-117. doi:10.1016/j.micromeso.2011.12.058

Canivet, J., Aguado, S., Daniel, C., & Farrusseng, D. (2011). Engineering the Environment of a Catalytic Metal-Organic Framework by Postsynthetic Hydrophobization. ChemCatChem, 3(4), 675-678. doi:10.1002/cctc.201000386

Aguado, S., Canivet, J., & Farrusseng, D. (2011). Engineering structured MOF at nano and macroscales for catalysis and separation. Journal of Materials Chemistry, 21(21), 7582. doi:10.1039/c1jm10787a

Aguado, S., Canivet, J., Schuurman, Y., & Farrusseng, D. (2011). Tuning the activity by controlling the wettability of MOF eggshell catalysts: A quantitative structure–activity study. Journal of Catalysis, 284(2), 207-214. doi:10.1016/j.jcat.2011.10.002

Pérez-Mayoral, E., Musilová, Z., Gil, B., Marszalek, B., Položij, M., Nachtigall, P., & Čejka, J. (2012). Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalton Transactions, 41(14), 4036. doi:10.1039/c2dt11978a

Shi, L.-X., & Wu, C.-D. (2011). A nanoporous metal–organic framework with accessible Cu2+ sites for the catalytic Henry reaction. Chemical Communications, 47(10), 2928. doi:10.1039/c0cc05074a

Pathan, N. B., Rahatgaonkar, A. M., & Chorghade, M. S. (2011). Metal-organic framework Cu3 (BTC)2(H2O)3 catalyzed Aldol synthesis of pyrimidine-chalcone hybrids. Catalysis Communications, 12(12), 1170-1176. doi:10.1016/j.catcom.2011.03.040

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Claisen-Schmidt Condensation Catalyzed by Metal-Organic Frameworks. Advanced Synthesis & Catalysis, 352(4), 711-717. doi:10.1002/adsc.200900747

Pan, Y., Yuan, B., Li, Y., & He, D. (2010). Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chemical Communications, 46(13), 2280. doi:10.1039/b922061e

Li, B., Zhang, Y., Ma, D., Li, L., Li, G., Li, G., … Feng, S. (2012). A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chemical Communications, 48(49), 6151. doi:10.1039/c2cc32384b

Park, J., Li, J.-R., Chen, Y.-P., Yu, J., Yakovenko, A. A., Wang, Z. U., … Zhou, H.-C. (2012). A versatile metal–organic framework for carbon dioxide capture and cooperative catalysis. Chemical Communications, 48(80), 9995. doi:10.1039/c2cc34622b

Sen, R., Saha, D., & Koner, S. (2012). Controlled Construction of Metal-Organic Frameworks: Hydrothermal Synthesis, X-ray Structure, and Heterogeneous Catalytic Study. Chemistry - A European Journal, 18(19), 5979-5986. doi:10.1002/chem.201102953

Saha, D., Sen, R., Maity, T., & Koner, S. (2012). Porous magnesium carboxylate framework: synthesis, X-ray crystal structure, gas adsorption property and heterogeneous catalytic aldol condensation reaction. Dalton Transactions, 41(24), 7399. doi:10.1039/c2dt00057a

Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d

Llabrés i Xamena, F. X., Corma, A., & Garcia, H. (2007). Applications for Metal−Organic Frameworks (MOFs) as Quantum Dot Semiconductors. The Journal of Physical Chemistry C, 111(1), 80-85. doi:10.1021/jp063600e

Cohen, S. M. (2011). Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chemical Reviews, 112(2), 970-1000. doi:10.1021/cr200179u

Bernt, S., Guillerm, V., Serre, C., & Stock, N. (2011). Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chemical Communications, 47(10), 2838. doi:10.1039/c0cc04526h

Hong, D.-Y., Hwang, Y. K., Serre, C., Férey, G., & Chang, J.-S. (2009). Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. Advanced Functional Materials, 19(10), 1537-1552. doi:10.1002/adfm.200801130

Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275

Cortese, R., & Duca, D. (2011). A DFT study of IRMOF-3 catalysed Knoevenagel condensation. Physical Chemistry Chemical Physics, 13(35), 15995. doi:10.1039/c1cp21301f

Ravon, U., Domine, M. E., Gaudillère, C., Desmartin-Chomel, A., & Farrusseng, D. (2008). MOFs as acid catalysts with shape selectivity properties. New Journal of Chemistry, 32(6), 937. doi:10.1039/b803953b

Marco-Contelles, J., Pérez-Mayoral, E., Samadi, A., Carreiras, M. do C., & Soriano, E. (2009). Recent Advances in the Friedländer Reaction. Chemical Reviews, 109(6), 2652-2671. doi:10.1021/cr800482c

Camps, P., Formosa, X., Muñoz-Torrero, D., Petrignet, J., Badia, A., & Clos, M. V. (2005). Synthesis and Pharmacological Evaluation of Huprine−Tacrine Heterodimers:  Subnanomolar Dual Binding Site Acetylcholinesterase Inhibitors. Journal of Medicinal Chemistry, 48(6), 1701-1704. doi:10.1021/jm0496741

Trost, B. M., & Yeh, V. S. C. (2002). A Dinuclear Zn Catalyst for the Asymmetric Nitroaldol (Henry) Reaction. Angewandte Chemie, 114(5), 889-891. doi:10.1002/1521-3757(20020301)114:5<889::aid-ange889>3.0.co;2-8

Trost, B. M., & Yeh, V. S. C. (2002). A Dinuclear Zn Catalyst for the Asymmetric Nitroaldol (Henry) Reaction We thank the National Science Foundation and the National Institutes of Health, General Medical Sciences, for their generous support of our programs. Mass spectra were provided by the Mass Spectrometry Facility of the University of California, San Francisco, supported by the NIH Division of Research Resources. Angewandte Chemie International Edition, 41(5), 861. doi:10.1002/1521-3773(20020301)41:5<861::aid-anie861>3.0.co;2-v

Tian, J., Yamagiwa, N., Matsunaga, S., & Shibasaki, M. (2002). Angewandte Chemie, 114(19), 3788-3790. doi:10.1002/1521-3757(20021004)114:19<3788::aid-ange3788>3.0.co;2-1

Tian, J., Yamagiwa, N., Matsunaga, S., & Shibasaki, M. (2002). An Asymmetric Cyanation Reaction and Sequential Asymmetric Cyanation–Nitroaldol Reaction Using a [YLi3{tris(binaphthoxide)}] Single Catalyst Component: Catalyst Tuning with Achiral Additives. Angewandte Chemie International Edition, 41(19), 3636-3638. doi:10.1002/1521-3773(20021004)41:19<3636::aid-anie3636>3.0.co;2-b

Jammi, S., & Punniyamurthy, T. (2009). Synthesis, Structure and Catalysis of Tetranuclear Copper(II) Open Cubane for Henry Reaction on Water. European Journal of Inorganic Chemistry, 2009(17), 2508-2511. doi:10.1002/ejic.200900141

Savonnet, M., Aguado, S., Ravon, U., Bazer-Bachi, D., Lecocq, V., Bats, N., … Farrusseng, D. (2009). Solvent free base catalysis and transesterification over basic functionalised Metal-Organic Frameworks. Green Chemistry, 11(11), 1729. doi:10.1039/b915291c

Wang, C., Xie, Z., deKrafft, K. E., & Lin, W. (2011). Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 133(34), 13445-13454. doi:10.1021/ja203564w

Lin, X.-M., Li, T.-T., Wang, Y.-W., Zhang, L., & Su, C.-Y. (2012). Two ZnIIMetal-Organic Frameworks with Coordinatively Unsaturated Metal Sites: Structures, Adsorption, and Catalysis. Chemistry - An Asian Journal, 7(12), 2796-2804. doi:10.1002/asia.201200601

Gu, J.-M., Kim, W.-S., & Huh, S. (2011). Size-dependent catalysis by DABCO-functionalized Zn-MOF with one-dimensional channels. Dalton Transactions, 40(41), 10826. doi:10.1039/c1dt11274k

Yu, H., Xie, J., Zhong, Y., Zhang, F., & Zhu, W. (2012). One-pot synthesis of nitroalkenes via the Henry reaction over amino-functionalized MIL-101 catalysts. Catalysis Communications, 29, 101-104. doi:10.1016/j.catcom.2012.09.032

Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. ., & Pratap, R. (2004). Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorganic & Medicinal Chemistry, 12(5), 883-889. doi:10.1016/j.bmc.2003.12.026

Goesten, M. G., Juan-Alcañiz, J., Ramos-Fernandez, E. V., Sai Sankar Gupta, K. B., Stavitski, E., van Bekkum, H., … Kapteijn, F. (2011). Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity. Journal of Catalysis, 281(1), 177-187. doi:10.1016/j.jcat.2011.04.015

Saha, D., Maity, T., Sen, R., & Koner, S. (2012). Heterogeneous catalysis over a barium carboxylate framework compound: Synthesis, X-ray crystal structure and aldol condensation reaction. Polyhedron, 43(1), 63-70. doi:10.1016/j.poly.2012.05.043

Maity, T., Saha, D., Das, S., & Koner, S. (2012). Barium Carboxylate Metal-Organic Framework - Synthesis, X-ray Crystal Structure, Photoluminescence and Catalytic Study. European Journal of Inorganic Chemistry, 2012(30), 4914-4920. doi:10.1002/ejic.201200417

Savonnet, M., Canivet, J., Gambarelli, S., Dubois, L., Bazer-Bachi, D., Lecocq, V., … Farrusseng, D. (2012). Cu-mediated solid-state reaction in a post-functionalized metal–organic framework. CrystEngComm, 14(12), 4105. doi:10.1039/c2ce00017b

Canivet, J., & Farrusseng, D. (2011). Protection-deprotection Methods Applied to Metal-Organic Frameworks for the Design of Original Single-Site Catalysts. ChemCatChem, 3(5), 823-826. doi:10.1002/cctc.201100002

Tanabe, K. K., & Cohen, S. M. (2011). Postsynthetic modification of metal–organic frameworks—a progress report. Chem. Soc. Rev., 40(2), 498-519. doi:10.1039/c0cs00031k

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem