- -

Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author de la Torre, Cristina es_ES
dc.contributor.author Agostini, Alessandro es_ES
dc.contributor.author Mondragón Martínez, Laura es_ES
dc.contributor.author Orzaez, Mar es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Martínez Mañez, Ramón es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Amoros, Pedro es_ES
dc.contributor.author Pérez Payá, Enrique es_ES
dc.date.accessioned 2015-03-06T13:12:02Z
dc.date.available 2015-03-06T13:12:02Z
dc.date.issued 2014
dc.identifier.issn 1359-7345
dc.identifier.uri http://hdl.handle.net/10251/47840
dc.description.abstract Changes in the conformation of a peptide anchored onto the external surface of mesoporous silica nanoparticles have been used to design novel temperature-controlled delivery systems. es_ES
dc.description.sponsorship Financial support from the Spanish Government (Project MAT2012-38429-C04) and the Generalitat Valencia (Project PROMETEO/2009/016) is gratefully acknowledged. C. T. is grateful to the Spanish Ministry of Science and Innovation for her grant. L. M. and A. A. thanks the Generalitat Valenciana for their post-doctoral VALI+D contract and Santiago Grisolia fellowship, respectively. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Responsive Controlled-Release es_ES
dc.subject Combinatorial library es_ES
dc.subject Amino-acids es_ES
dc.subject Nanoparticles es_ES
dc.subject Chemistry es_ES
dc.subject Valves es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3cc49421g
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation De La Torre, C.; Agostini, A.; Mondragón Martínez, L.; Orzaez, M.; Sancenón Galarza, F.; Martínez Mañez, R.; Marcos Martínez, MD.... (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chemical Communications. 50(24):3184-3186. https://doi.org/10.1039/c3cc49421g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3cc49421g es_ES
dc.description.upvformatpinicio 3184 es_ES
dc.description.upvformatpfin 3186 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 24 es_ES
dc.relation.senia 267882
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734 es_ES
dc.description.references Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 es_ES
dc.description.references Popat, A., Hartono, S. B., Stahr, F., Liu, J., Qiao, S. Z., & Qing (Max) Lu, G. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 3(7), 2801. doi:10.1039/c1nr10224a es_ES
dc.description.references Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m es_ES
dc.description.references Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751 es_ES
dc.description.references Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362 es_ES
dc.description.references Angelos, S., Khashab, N. M., Yang, Y.-W., Trabolsi, A., Khatib, H. A., Stoddart, J. F., & Zink, J. I. (2009). pH Clock-Operated Mechanized Nanoparticles. Journal of the American Chemical Society, 131(36), 12912-12914. doi:10.1021/ja9010157 es_ES
dc.description.references Saha, S., Leung, K. C.-F., Nguyen, T. D., Stoddart, J. F., & Zink, J. I. (2007). Nanovalves. Advanced Functional Materials, 17(5), 685-693. doi:10.1002/adfm.200600989 es_ES
dc.description.references Zhou, Y., Guo, W., Cheng, J., Liu, Y., Li, J., & Jiang, L. (2012). High-Temperature Gating of Solid-State Nanopores with Thermo-Responsive Macromolecular Nanoactuators in Ionic Liquids. Advanced Materials, 24(7), 962-967. doi:10.1002/adma.201104814 es_ES
dc.description.references Chen, M., Huang, C., He, C., Zhu, W., Xu, Y., & Lu, Y. (2012). A glucose-responsive controlled release system using glucose oxidase-gated mesoporous silica nanocontainers. Chemical Communications, 48(76), 9522. doi:10.1039/c2cc34290a es_ES
dc.description.references Choi, Y. L., Jaworski, J., Seo, M. L., Lee, S. J., & Jung, J. H. (2011). Controlled release using mesoporous silica nanoparticles functionalized with 18-crown-6 derivative. Journal of Materials Chemistry, 21(22), 7882. doi:10.1039/c1jm11334h es_ES
dc.description.references Popat, A., Ross, B. P., Liu, J., Jambhrunkar, S., Kleitz, F., & Qiao, S. Z. (2012). Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angewandte Chemie International Edition, 51(50), 12486-12489. doi:10.1002/anie.201206416 es_ES
dc.description.references Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k es_ES
dc.description.references Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d es_ES
dc.description.references Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847 es_ES
dc.description.references Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition, 50(9), 2138-2140. doi:10.1002/anie.201004133 es_ES
dc.description.references Fu, Q., Rao, G. V. R., Ista, L. K., Wu, Y., Andrzejewski, B. P., Sklar, L. A., … López, G. P. (2003). Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Advanced Materials, 15(15), 1262-1266. doi:10.1002/adma.200305165 es_ES
dc.description.references You, Y.-Z., Kalebaila, K. K., Brock, S. L., & Oupický, D. (2008). Temperature-Controlled Uptake and Release in PNIPAM-Modified Porous Silica Nanoparticles. Chemistry of Materials, 20(10), 3354-3359. doi:10.1021/cm703363w es_ES
dc.description.references Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756 es_ES
dc.description.references Yan, H., Teh, C., Sreejith, S., Zhu, L., Kwok, A., Fang, W., … Zhao, Y. (2012). Functional Mesoporous Silica Nanoparticles for Photothermal-Controlled Drug Delivery In Vivo. Angewandte Chemie International Edition, 51(33), 8373-8377. doi:10.1002/anie.201203993 es_ES
dc.description.references Li, N., Yu, Z., Pan, W., Han, Y., Zhang, T., & Tang, B. (2012). A Near-Infrared Light-Triggered Nanocarrier with Reversible DNA Valves for Intracellular Controlled Release. Advanced Functional Materials, 23(18), 2255-2262. doi:10.1002/adfm.201202564 es_ES
dc.description.references Yang, X., Liu, X., Liu, Z., Pu, F., Ren, J., & Qu, X. (2012). Near-Infrared Light-Triggered, Targeted Drug Delivery to Cancer Cells by Aptamer Gated Nanovehicles. Advanced Materials, 24(21), 2890-2895. doi:10.1002/adma.201104797 es_ES
dc.description.references Ma, X., Ong, O. S., & Zhao, Y. (2013). Dual-responsive drug release from oligonucleotide-capped mesoporous silica nanoparticles. Biomaterials Science, 1(9), 912. doi:10.1039/c3bm60090d es_ES
dc.description.references Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 49(28), 4734-4737. doi:10.1002/anie.201000827 es_ES
dc.description.references Martelli, G., Zope, H. R., Bròvia Capell, M., & Kros, A. (2013). Coiled-coil peptide motifs as thermoresponsive valves for mesoporous silica nanoparticles. Chemical Communications, 49(85), 9932. doi:10.1039/c3cc45790g es_ES
dc.description.references Mas, V., Perez-Paya, E., Estepa, A., Gonzalez Ros, J. M., Pérez, L., Rocha, A., … Encinar, J. A. (2002). Salmonid viral haemorrhagic septicaemia virus: fusion-related enhancement of virus infectivity by peptides derived from viral glycoprotein G or a combinatorial library. Journal of General Virology, 83(11), 2671-2681. doi:10.1099/0022-1317-83-11-2671 es_ES
dc.description.references BLANES-MIRA, C., PASTOR, M. T., VALERA, E., FERNÁNDEZ-BALLESTER, G., MERINO, J. M., GUTIERREZ, L. M., … FERRER-MONTIEL, A. (2003). Identification of SNARE complex modulators that inhibit exocytosis from an α-helix-constrained combinatorial library. Biochemical Journal, 375(1), 159-166. doi:10.1042/bj20030509 es_ES
dc.description.references Rohl, C. A., Chakrabartty, A., & Baldwin, R. L. (1996). Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40 volume percent trifluoroethanol. Protein Science, 5(12), 2623-2637. doi:10.1002/pro.5560051225 es_ES
dc.description.references Esteve, V., Blondelle, S., Celda, B., & P�rez-Pay�, E. (2001). Stabilization of an ?-helical conformation in an isolated hexapeptide inhibitor of calmodulin. Biopolymers, 59(7), 467-476. doi:10.1002/1097-0282(200112)59:7<467::aid-bip1052>3.0.co;2-5 es_ES
dc.description.references Marqusee, S., & Baldwin, R. L. (1987). Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proceedings of the National Academy of Sciences, 84(24), 8898-8902. doi:10.1073/pnas.84.24.8898 es_ES
dc.description.references O’Neil, K., & DeGrado, W. (1990). A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science, 250(4981), 646-651. doi:10.1126/science.2237415 es_ES
dc.description.references Gans, P. J., Lyu, P. C., Manning, M. C., Woody, R. W., & Kallenbach, N. R. (1991). The helix-coil transition in heterogeneous peptides with specific side-chain interactions: Theory and comparison with CD spectral data. Biopolymers, 31(13), 1605-1614. doi:10.1002/bip.360311315 es_ES
dc.description.references Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7 es_ES
dc.description.references Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5 es_ES
dc.description.references Gao, J., Zhang, X., Xu, S., Tan, F., Li, X., Zhang, Y., … Liu, J. (2013). Clickable Periodic Mesoporous Organosilicas: Synthesis, Click Reactions, and Adsorption of Antibiotics. Chemistry - A European Journal, 20(7), 1957-1963. doi:10.1002/chem.201303778 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem