- -

To what extent is the bipolar rheoencephalographic signal contaminated by scalp blood flow? A clinical study to quantify its extra and non-extracranial components

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

To what extent is the bipolar rheoencephalographic signal contaminated by scalp blood flow? A clinical study to quantify its extra and non-extracranial components

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez Martínez, Juan José es_ES
dc.date.accessioned 2015-03-09T10:12:57Z
dc.date.available 2015-03-09T10:12:57Z
dc.date.issued 2014-09-06
dc.identifier.issn 1475-925X
dc.identifier.uri http://hdl.handle.net/10251/47868
dc.description.abstract Background: Impedance plethysmography applied to the head by using a pair of electrodes attached to the scalp surface is known as bipolar Rheoencephalography or REG I and was originally proposed to measure changes in cerebral blood volume related to the heartbeat. REG I was soon discarded in favor of other REG configurations, since most of the signal was shown to be heavily contaminated by the extracranial blood flow. The main goal of this study was to identify and compare the part of the REG I signal caused by scalp blood flow with that originating from non-extracranial sources. Methods: A clinical study involving thirty-six healthy volunteers was designed for this purpose. REG I was first registered in each subject under normal conditions. A pneumatic cuff was then placed around the head and was inflated to arrest the scalp blood flow and a second REG I was recorded. Finally, a third REG I was taken immediately after cuff deflation. Results: The REG I signal is attenuated, but not extinguished, during cuff inflation in a wide subject-dependent range ratio from 0.12 to 0.68 (0.37 ± 0.15). The residual REG I signal has a waveform that is markedly different from that obtained before cuff inflation, which supports the hypothesis of the intracranial origin of the residual REG I signal. Additionally, an increase of 22% in REG I amplitude was observed when the head cuff was deflated. Conclusions: Waveform differences between extra and non-extracranial components are significant and these differences could be used in a method to distinguish one from the other. However, a significant part of the REG I signal is caused by a non-extracranial source and, therefore, it should not be used as a footprint of the extracranial blood flow. es_ES
dc.description.sponsorship The author would like to thank E Guijarro, T Pons, P Ortiz, E Berjano and M Monserrat for their help and assistance in the development of this research. This research was supported by grant PI04/0303 from the Instituto de Salud Carlos III (Fondo de Investigacion Sanitaria) in the framework of the 'Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica (I + D + I)'. en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BioMedical Engineering OnLine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Rheoencephalography es_ES
dc.subject Impedance plethysmography es_ES
dc.subject Scalp blood flow es_ES
dc.subject Cerebral blood flow es_ES
dc.subject Electrical bioimpedance es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title To what extent is the bipolar rheoencephalographic signal contaminated by scalp blood flow? A clinical study to quantify its extra and non-extracranial components es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1475-925X-13-131
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI04%2F0303/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Pérez Martínez, JJ. (2014). To what extent is the bipolar rheoencephalographic signal contaminated by scalp blood flow? A clinical study to quantify its extra and non-extracranial components. BioMedical Engineering OnLine. 13(131):1-11. https://doi.org/10.1186/1475-925X-13-131 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/1475-925X-13-131 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 131 es_ES
dc.relation.senia 277228
dc.identifier.pmid 25192886 en_EN
dc.identifier.pmcid PMC4169836 en_EN
dc.contributor.funder Instituto de Salud Carlos III; Fondo de Investigaciones Sanitarias es_ES
dc.description.references Namon, R., & Markovich, S. E. (1967). Monopolar rheoencephalography. Electroencephalography and Clinical Neurophysiology, 22(3), 272-274. doi:10.1016/0013-4694(67)90233-7 es_ES
dc.description.references McHenry, L. C. (1965). Rheoencephalography: A clinical appraisal. Neurology, 15(6), 507-507. doi:10.1212/wnl.15.6.507 es_ES
dc.description.references Perez-Borja, C., & Meyer, J. S. (1964). A critical evaluation of rheoencephalography in control subjects and in proven cases of cerebrovascular disease. Journal of Neurology, Neurosurgery & Psychiatry, 27(1), 66-72. doi:10.1136/jnnp.27.1.66 es_ES
dc.description.references Laitinen, L. V. (1968). A comparative study on pulsatile intracerebral impedance and rheoencephalography. Electroencephalography and Clinical Neurophysiology, 25(3), 197-202. doi:10.1016/0013-4694(68)90016-3 es_ES
dc.description.references Weindling, A. M., Murdoch, N., & Rolfe, P. (1982). Effect of electrode size on the contributions of intracranial and extracranial blood flow to the cerebral electrical impedance plethysmogram. Medical & Biological Engineering & Computing, 20(5), 545-549. doi:10.1007/bf02443401 es_ES
dc.description.references Hatsell, C. P. (1991). A quasi-power theorem for bulk conductors: comments on rheoencephalography. IEEE Transactions on Biomedical Engineering, 38(7), 665-669. doi:10.1109/10.83566 es_ES
dc.description.references Basano, L., Ottonello, P., Nobili, F., Vitali, P., Pallavicini, F. B., Ricca, B., … Rodriguez, G. (2001). Pulsatile electrical impedance response from cerebrally dead adult patients is not a reliable tool for detecting cerebral perfusion changes. Physiological Measurement, 22(2), 341-349. doi:10.1088/0967-3334/22/2/306 es_ES
dc.description.references Bodo, M., Pearce, F. J., & Armonda, R. A. (2004). Cerebrovascular reactivity: rat studies in rheoencephalography. Physiological Measurement, 25(6), 1371-1384. doi:10.1088/0967-3334/25/6/003 es_ES
dc.description.references Traczewski, W., Moskala, M., Kruk, D., Gościński, I., Szwabowska, D., Polak, J., & Wielgosz, K. (2005). The Role of Computerized Rheoencephalography in the Assessment of Normal Pressure Hydrocephalus. Journal of Neurotrauma, 22(7), 836-843. doi:10.1089/neu.2005.22.836 es_ES
dc.description.references Bayford, R. H., Gibson, A., Tizzard, A., Tidswell, T., & Holder, D. S. (2001). Solving the forward problem in electrical impedance tomography for the human head using IDEAS (integrated design engineering analysis software), a finite element modelling tool. Physiological Measurement, 22(1), 55-64. doi:10.1088/0967-3334/22/1/308 es_ES
dc.description.references Chambers, I. R., Daubaris, G., Jarzemskas, E., Fountas, K., Kvascevicius, R., Ragauskas, A., … Sitkauskas, A. (2005). The clinical application of non-invasive intracranial blood volume pulse wave monitoring. Physiological Measurement, 26(6), 1019-1032. doi:10.1088/0967-3334/26/6/011 es_ES
dc.description.references Davie, S. N., & Grocott, H. P. (2012). Impact of Extracranial Contamination on Regional Cerebral Oxygen Saturation. Anesthesiology, 116(4), 834-840. doi:10.1097/aln.0b013e31824c00d7 es_ES
dc.description.references Owen-Reece, H., Elwell, C. E., Wyatt, J. S., & Delpy, D. T. (1996). The effect of scalp ischaemia on measurement of cerebral blood volume by near-infrared spectroscopy. Physiological Measurement, 17(4), 279-286. doi:10.1088/0967-3334/17/4/005 es_ES
dc.description.references Allen, P. J., Polizzi, G., Krakow, K., Fish, D. R., & Lemieux, L. (1998). Identification of EEG Events in the MR Scanner: The Problem of Pulse Artifact and a Method for Its Subtraction. NeuroImage, 8(3), 229-239. doi:10.1006/nimg.1998.0361 es_ES
dc.description.references Pérez, J. ., Guijarro, E., & Barcia, J. . (2000). Quantification of intracranial contribution to rheoencephalography by a numerical model of the head. Clinical Neurophysiology, 111(7), 1306-1314. doi:10.1016/s1388-2457(00)00304-7 es_ES
dc.description.references Klemp, P., Peters, K., & Hansted, B. (1989). Subcutaneous Blood Flow in Early Male Pattern Baldness. Journal of Investigative Dermatology, 92(5), 725-726. doi:10.1111/1523-1747.ep12721603 es_ES
dc.description.references Pérez, J. J., Guijarro, E., & Barcia, J. A. (2004). Influence of the scalp thickness on the intracranial contribution to rheoencephalography. Physics in Medicine and Biology, 49(18), 4383-4394. doi:10.1088/0031-9155/49/18/013 es_ES
dc.description.references Pérez, J. J., Guijarro, E., & Sancho, J. (2005). Spatiotemporal pattern of the extracranial component of the rheoencephalographic signal. Physiological Measurement, 26(6), 925-938. doi:10.1088/0967-3334/26/6/004 es_ES
dc.description.references Balédent, O., Fin, L., Khuoy, L., Ambarki, K., Gauvin, A.-C., Gondry-Jouet, C., & Meyer, M.-E. (2006). Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color doppler. Journal of Magnetic Resonance Imaging, 24(5), 995-1004. doi:10.1002/jmri.20722 es_ES
dc.description.references Ford, M. D., Alperin, N., Lee, S. H., Holdsworth, D. W., & Steinman, D. A. (2005). Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiological Measurement, 26(4), 477-488. doi:10.1088/0967-3334/26/4/013 es_ES
dc.description.references Wåhlin, A., Ambarki, K., Hauksson, J., Birgander, R., Malm, J., & Eklund, A. (2011). Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: Repeatability and physiological interactions. Journal of Magnetic Resonance Imaging, 35(5), 1055-1062. doi:10.1002/jmri.23527 es_ES
dc.description.references Enzmann, D. R., & Pelc, N. J. (1992). Brain motion: measurement with phase-contrast MR imaging. Radiology, 185(3), 653-660. doi:10.1148/radiology.185.3.1438741 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem