- -

To what extent is the bipolar rheoencephalographic signal contaminated by scalp blood flow? A clinical study to quantify its extra and non-extracranial components

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

To what extent is the bipolar rheoencephalographic signal contaminated by scalp blood flow? A clinical study to quantify its extra and non-extracranial components

Mostrar el registro completo del ítem

Pérez Martínez, JJ. (2014). To what extent is the bipolar rheoencephalographic signal contaminated by scalp blood flow? A clinical study to quantify its extra and non-extracranial components. BioMedical Engineering OnLine. 13(131):1-11. https://doi.org/10.1186/1475-925X-13-131

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47868

Ficheros en el ítem

Metadatos del ítem

Título: To what extent is the bipolar rheoencephalographic signal contaminated by scalp blood flow? A clinical study to quantify its extra and non-extracranial components
Autor: Pérez Martínez, Juan José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
Background: Impedance plethysmography applied to the head by using a pair of electrodes attached to the scalp surface is known as bipolar Rheoencephalography or REG I and was originally proposed to measure changes in ...[+]
Palabras clave: Rheoencephalography , Impedance plethysmography , Scalp blood flow , Cerebral blood flow , Electrical bioimpedance
Derechos de uso: Reconocimiento (by)
Fuente:
BioMedical Engineering OnLine. (issn: 1475-925X )
DOI: 10.1186/1475-925X-13-131
Editorial:
BioMed Central
Versión del editor: http://dx.doi.org/10.1186/1475-925X-13-131
Código del Proyecto:
info:eu-repo/grantAgreement/ISCIII//PI04%2F0303/
Agradecimientos:
The author would like to thank E Guijarro, T Pons, P Ortiz, E Berjano and M Monserrat for their help and assistance in the development of this research. This research was supported by grant PI04/0303 from the Instituto de ...[+]
Tipo: Artículo

References

Namon, R., & Markovich, S. E. (1967). Monopolar rheoencephalography. Electroencephalography and Clinical Neurophysiology, 22(3), 272-274. doi:10.1016/0013-4694(67)90233-7

McHenry, L. C. (1965). Rheoencephalography: A clinical appraisal. Neurology, 15(6), 507-507. doi:10.1212/wnl.15.6.507

Perez-Borja, C., & Meyer, J. S. (1964). A critical evaluation of rheoencephalography in control subjects and in proven cases of cerebrovascular disease. Journal of Neurology, Neurosurgery & Psychiatry, 27(1), 66-72. doi:10.1136/jnnp.27.1.66 [+]
Namon, R., & Markovich, S. E. (1967). Monopolar rheoencephalography. Electroencephalography and Clinical Neurophysiology, 22(3), 272-274. doi:10.1016/0013-4694(67)90233-7

McHenry, L. C. (1965). Rheoencephalography: A clinical appraisal. Neurology, 15(6), 507-507. doi:10.1212/wnl.15.6.507

Perez-Borja, C., & Meyer, J. S. (1964). A critical evaluation of rheoencephalography in control subjects and in proven cases of cerebrovascular disease. Journal of Neurology, Neurosurgery & Psychiatry, 27(1), 66-72. doi:10.1136/jnnp.27.1.66

Laitinen, L. V. (1968). A comparative study on pulsatile intracerebral impedance and rheoencephalography. Electroencephalography and Clinical Neurophysiology, 25(3), 197-202. doi:10.1016/0013-4694(68)90016-3

Weindling, A. M., Murdoch, N., & Rolfe, P. (1982). Effect of electrode size on the contributions of intracranial and extracranial blood flow to the cerebral electrical impedance plethysmogram. Medical & Biological Engineering & Computing, 20(5), 545-549. doi:10.1007/bf02443401

Hatsell, C. P. (1991). A quasi-power theorem for bulk conductors: comments on rheoencephalography. IEEE Transactions on Biomedical Engineering, 38(7), 665-669. doi:10.1109/10.83566

Basano, L., Ottonello, P., Nobili, F., Vitali, P., Pallavicini, F. B., Ricca, B., … Rodriguez, G. (2001). Pulsatile electrical impedance response from cerebrally dead adult patients is not a reliable tool for detecting cerebral perfusion changes. Physiological Measurement, 22(2), 341-349. doi:10.1088/0967-3334/22/2/306

Bodo, M., Pearce, F. J., & Armonda, R. A. (2004). Cerebrovascular reactivity: rat studies in rheoencephalography. Physiological Measurement, 25(6), 1371-1384. doi:10.1088/0967-3334/25/6/003

Traczewski, W., Moskala, M., Kruk, D., Gościński, I., Szwabowska, D., Polak, J., & Wielgosz, K. (2005). The Role of Computerized Rheoencephalography in the Assessment of Normal Pressure Hydrocephalus. Journal of Neurotrauma, 22(7), 836-843. doi:10.1089/neu.2005.22.836

Bayford, R. H., Gibson, A., Tizzard, A., Tidswell, T., & Holder, D. S. (2001). Solving the forward problem in electrical impedance tomography for the human head using IDEAS (integrated design engineering analysis software), a finite element modelling tool. Physiological Measurement, 22(1), 55-64. doi:10.1088/0967-3334/22/1/308

Chambers, I. R., Daubaris, G., Jarzemskas, E., Fountas, K., Kvascevicius, R., Ragauskas, A., … Sitkauskas, A. (2005). The clinical application of non-invasive intracranial blood volume pulse wave monitoring. Physiological Measurement, 26(6), 1019-1032. doi:10.1088/0967-3334/26/6/011

Davie, S. N., & Grocott, H. P. (2012). Impact of Extracranial Contamination on Regional Cerebral Oxygen Saturation. Anesthesiology, 116(4), 834-840. doi:10.1097/aln.0b013e31824c00d7

Owen-Reece, H., Elwell, C. E., Wyatt, J. S., & Delpy, D. T. (1996). The effect of scalp ischaemia on measurement of cerebral blood volume by near-infrared spectroscopy. Physiological Measurement, 17(4), 279-286. doi:10.1088/0967-3334/17/4/005

Allen, P. J., Polizzi, G., Krakow, K., Fish, D. R., & Lemieux, L. (1998). Identification of EEG Events in the MR Scanner: The Problem of Pulse Artifact and a Method for Its Subtraction. NeuroImage, 8(3), 229-239. doi:10.1006/nimg.1998.0361

Pérez, J. ., Guijarro, E., & Barcia, J. . (2000). Quantification of intracranial contribution to rheoencephalography by a numerical model of the head. Clinical Neurophysiology, 111(7), 1306-1314. doi:10.1016/s1388-2457(00)00304-7

Klemp, P., Peters, K., & Hansted, B. (1989). Subcutaneous Blood Flow in Early Male Pattern Baldness. Journal of Investigative Dermatology, 92(5), 725-726. doi:10.1111/1523-1747.ep12721603

Pérez, J. J., Guijarro, E., & Barcia, J. A. (2004). Influence of the scalp thickness on the intracranial contribution to rheoencephalography. Physics in Medicine and Biology, 49(18), 4383-4394. doi:10.1088/0031-9155/49/18/013

Pérez, J. J., Guijarro, E., & Sancho, J. (2005). Spatiotemporal pattern of the extracranial component of the rheoencephalographic signal. Physiological Measurement, 26(6), 925-938. doi:10.1088/0967-3334/26/6/004

Balédent, O., Fin, L., Khuoy, L., Ambarki, K., Gauvin, A.-C., Gondry-Jouet, C., & Meyer, M.-E. (2006). Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color doppler. Journal of Magnetic Resonance Imaging, 24(5), 995-1004. doi:10.1002/jmri.20722

Ford, M. D., Alperin, N., Lee, S. H., Holdsworth, D. W., & Steinman, D. A. (2005). Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiological Measurement, 26(4), 477-488. doi:10.1088/0967-3334/26/4/013

Wåhlin, A., Ambarki, K., Hauksson, J., Birgander, R., Malm, J., & Eklund, A. (2011). Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: Repeatability and physiological interactions. Journal of Magnetic Resonance Imaging, 35(5), 1055-1062. doi:10.1002/jmri.23527

Enzmann, D. R., & Pelc, N. J. (1992). Brain motion: measurement with phase-contrast MR imaging. Radiology, 185(3), 653-660. doi:10.1148/radiology.185.3.1438741

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem