- -

Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?

Mostrar el registro completo del ítem

González Suárez, A.; Trujillo Guillen, M.; Burdío, F.; Andaluz, A.; Berjano, E. (2014). Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?. Medical Physics. 41(8):083301-1-83301-13. https://doi.org/10.1118/1.4890103

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47908

Ficheros en el ítem

Metadatos del ítem

Título: Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?
Autor: González Suárez, Ana Trujillo Guillen, Macarena Burdío, Fernando Andaluz, Anna Berjano, Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
Purpose: To assess by means of computer simulations whether the heat sink effect inside a large vessel (portal vein) could protect the vessel wall from thermal damage close to an internally cooled electrode during ...[+]
Palabras clave: Blood flow , Computer modeling , Heat sink effect , In vivo model , Large vessels , Radiofrequency-assisted resection
Derechos de uso: Reserva de todos los derechos
Fuente:
Medical Physics. (issn: 0094-2405 )
DOI: 10.1118/1.4890103
Editorial:
American Association of Physicists in Medicine: Medical Physics
Versión del editor: http://dx.doi.org/10.1118/1.4890103
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-02/ES/EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIA/
info:eu-repo/grantAgreement/UPV//INNOVA11-01- 5502/
info:eu-repo/grantAgreement/UPV//PAID-06-11-1988/
info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/
info:eu-repo/grantAgreement/GVA//ACIF%2F2011%2F194/
Agradecimientos:
This work received financial support from the Spanish "Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion" Grant No. TEC2011-27133-C02-01 and -02, also from the Universitat Politecnica de Valencia (INNOVA11-01-5502; ...[+]
Tipo: Artículo

References

Poon, R. T., Fan, S. T., & Wong, J. (2005). Liver resection using a saline-linked radiofrequency dissecting sealer for transection of the liver. Journal of the American College of Surgeons, 200(2), 308-313. doi:10.1016/j.jamcollsurg.2004.10.008

Burdío, F., Grande, L., Berjano, E., Martinez-Serrano, M., Poves, I., Burdío, J. M., … Güemes, A. (2010). A new single-instrument technique for parenchyma division and hemostasis in liver resection: a clinical feasibility study. The American Journal of Surgery, 200(6), e75-e80. doi:10.1016/j.amjsurg.2010.02.020

Topp, S. A., McClurken, M., Lipson, D., Upadhya, G. A., Ritter, J. H., Linehan, D., & Strasberg, S. M. (2004). Saline-Linked Surface Radiofrequency Ablation. Annals of Surgery, 239(4), 518-527. doi:10.1097/01.sla.0000118927.83650.a4 [+]
Poon, R. T., Fan, S. T., & Wong, J. (2005). Liver resection using a saline-linked radiofrequency dissecting sealer for transection of the liver. Journal of the American College of Surgeons, 200(2), 308-313. doi:10.1016/j.jamcollsurg.2004.10.008

Burdío, F., Grande, L., Berjano, E., Martinez-Serrano, M., Poves, I., Burdío, J. M., … Güemes, A. (2010). A new single-instrument technique for parenchyma division and hemostasis in liver resection: a clinical feasibility study. The American Journal of Surgery, 200(6), e75-e80. doi:10.1016/j.amjsurg.2010.02.020

Topp, S. A., McClurken, M., Lipson, D., Upadhya, G. A., Ritter, J. H., Linehan, D., & Strasberg, S. M. (2004). Saline-Linked Surface Radiofrequency Ablation. Annals of Surgery, 239(4), 518-527. doi:10.1097/01.sla.0000118927.83650.a4

Tepetes, K. (2008). Risks of the radiofrequency-assisted liver resection. Journal of Surgical Oncology, 97(2), 193-193. doi:10.1002/jso.20900

Marchal, F., Elias, D., Rauch, P., Zarnegar, R., Leroux, A., Stines, J., … Villemot, J. P. (2006). Prevention of Biliary Lesions That May Occur During Radiofrequency Ablation of the Liver. Annals of Surgery, 243(1), 82-88. doi:10.1097/01.sla.0000193831.39362.07

Sutton, P. A., Awad, S., Perkins, A. C., & Lobo, D. N. (2010). Comparison of lateral thermal spread using monopolar and bipolar diathermy, the Harmonic Scalpel™and the Ligasure™. British Journal of Surgery, 97(3), 428-433. doi:10.1002/bjs.6901

Lee, J. M., Han, J. K., Chang, J. M., Chung, S. Y., Kim, S. H., Lee, J. Y., … Choi, B. I. (2006). Radiofrequency Ablation of the Porcine Liver In Vivo: Increased Coagulation with an Internally Cooled Perfusion Electrode. Academic Radiology, 13(3), 343-352. doi:10.1016/j.acra.2005.10.020

Goldberg, S. N., Grassi, C. J., Cardella, J. F., Charboneau, J. W., Dodd, G. D., Dupuy, D. E., … Silverman, S. G. (2005). Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria. Radiology, 235(3), 728-739. doi:10.1148/radiol.2353042205

Pennes, H. H. (1948). Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 1(2), 93-122. doi:10.1152/jappl.1948.1.2.93

Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045

Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004

Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24

Zhao, G., Zhang, H.-F., Guo, X.-J., Luo, D.-W., & Gao, D.-Y. (2007). Effect of blood flow and metabolism on multidimensional heat transfer during cryosurgery. Medical Engineering & Physics, 29(2), 205-215. doi:10.1016/j.medengphy.2006.03.005

T. Pätz T. Körger T. Preusser Simulation of radiofrequency ablation including water evaporation 2009

Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27

Chang, I. A. (2010). Considerations for Thermal Injury Analysis for RF Ablation Devices~!2009-09-09~!2009-12-19~!2010-02-04~! The Open Biomedical Engineering Journal, 4(2), 3-12. doi:10.2174/1874120701004020003

Tungjitkusolmun, S., Staelin, S. T., Haemmerich, D., Jang-Zern Tsai, Hong Cao, Webster, J. G., … Vorperian, V. R. (2002). Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Transactions on Biomedical Engineering, 49(1), 3-9. doi:10.1109/10.972834

Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317

Antunes, C. L., Almeida, T. R. O., & Raposeiro, N. (2012). Saline‐enhanced RF ablation on a cholangiocarcinoma: a numerical simulation. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 31(4), 1055-1066. doi:10.1108/03321641211227302

Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107

Haemmerich, D., Wright, A. W., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: A finite element study. Medical & Biological Engineering & Computing, 41(3), 317-323. doi:10.1007/bf02348437

Berjano, E. J., Burdío, F., Navarro, A. C., Burdío, J. M., Güemes, A., Aldana, O., … Gregorio, M. A. de. (2006). Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study. Physiological Measurement, 27(10), N55-N66. doi:10.1088/0967-3334/27/10/n03

Burdío, F., Berjano, E. J., Navarro, A., Burdío, J. M., Grande, L., Gonzalez, A., … Lequerica, J. L. (2009). Research and development of a new RF-assisted device for bloodless rapid transection of the liver: Computational modeling and in vivo experiments. BioMedical Engineering OnLine, 8(1), 6. doi:10.1186/1475-925x-8-6

Modelling in Medicine and Biology VI. (2005). doi:10.2495/bio05

Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488

Berjano, E., & d’ Avila, A. (2013). Lumped Element Electrical Model based on Three Resistors for Electrical Impedance in Radiofrequency Cardiac Ablation: Estimations from Analytical Calculations and Clinical Data. The Open Biomedical Engineering Journal, 7(1), 62-70. doi:10.2174/1874120720130603001

Hannesson, P., Stridbeck, H., Lundstedt, C., Andren-Sandberg, Å., & Ihse, I. (1995). Intravascular Ultrasound of the Portal Vein — Normal Anatomy. Acta Radiologica, 36(4), 388-392. doi:10.3109/02841859509173394

Chen, X., & Saidel, G. M. (2008). Mathematical Modeling of Thermal Ablation in Tissue Surrounding a Large Vessel. Journal of Biomechanical Engineering, 131(1). doi:10.1115/1.2965374

T. Peng D. O'Neill S. Payne Mathematical study of the effects of different intrahepatic cooling on thermal ablation zones 2011

CIONI, G., D’ALIMONTE, P., CRISTANI, A., VENTURA, P., ABBATI, G., TINCANI, E., … VENTURA, E. (1992). Duplex-Doppler assessment of cirrhosis in patients with chronic compensated liver disease. Journal of Gastroenterology and Hepatology, 7(4), 382-384. doi:10.1111/j.1440-1746.1992.tb01003.x

Ríos, J. S., Zalabardo, J. M. S., Burdio, F., Berjano, E., Moros, M., Gonzalez, A., … Güemes, A. (2011). Single Instrument for Hemostatic Control in Laparoscopic Partial Nephrectomy in a Porcine Model Without Renal Vascular Clamping. Journal of Endourology, 25(6), 1005-1011. doi:10.1089/end.2010.0557

Dos Santos, I., Haemmerich, D., Pinheiro, C., & da Rocha, A. (2008). Effect of variable heat transfer coefficient on tissue temperature next to a large vessel during radiofrequency tumor ablation. BioMedical Engineering OnLine, 7(1), 21. doi:10.1186/1475-925x-7-21

Consiglieri, L., Santos, I. dos, & Haemmerich, D. (2003). Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies. Physics in Medicine and Biology, 48(24), 4125-4134. doi:10.1088/0031-9155/48/24/010

Consiglieri, L. (2012). Continuum Models for the Cooling Effect of Blood Flow on Thermal Ablation Techniques. International Journal of Thermophysics, 33(5), 864-884. doi:10.1007/s10765-012-1194-0

Huang, H.-W. (2013). Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors. Medical Physics, 40(7), 073303. doi:10.1118/1.4811135

Welp, C., Siebers, S., Ermert, H., & Werner, J. (2006). Investigation of the influence of blood flow rate on large vessel cooling in hepatic radiofrequency ablation / Untersuchung des Einflusses der Blutflussgeschwindigkeit auf die Gefäßkühlung bei der Radiofrequenzablation von Lebertumoren. Biomedizinische Technik/Biomedical Engineering, 51(5_6), 337-346. doi:10.1515/bmt.2006.067

Lehmann, K. S., Ritz, J. P., Valdeig, S., Knappe, V., Schenk, A., Weihusen, A., … Frericks, B. B. (2009). Ex situ quantification of the cooling effect of liver vessels on radiofrequency ablation. Langenbeck’s Archives of Surgery, 394(3), 475-481. doi:10.1007/s00423-009-0480-1

Ng, K. K. C., Lam, C. M., Poon, R. T. P., Shek, T. W. H., Fan, S. T., & Wong, J. (2004). Delayed portal vein thrombosis after experimental radiofrequency ablation near the main portal vein. British Journal of Surgery, 91(5), 632-639. doi:10.1002/bjs.4500

Metcalfe, M. S., Mullin, E. J., Texler, M., Berry, D. P., Dennison, A. R., & Maddern, G. J. (2007). The safety and efficacy of radiofrequency and electrolytic ablation created adjacent to large hepatic veins in a porcine model. European Journal of Surgical Oncology (EJSO), 33(5), 662-667. doi:10.1016/j.ejso.2007.02.011

Bangard, C., Gossmann, A., Kasper, H. U., Hellmich, M., Fischer, J. H., Hölscher, A., … Stippel, D. L. (2006). Experimental Radiofrequency Ablation Near the Portal and the Hepatic Veins in Pigs: Differences in Efficacy of a Monopolar Ablation System. Journal of Surgical Research, 135(1), 113-119. doi:10.1016/j.jss.2006.02.026

T. Kröger T. Preusser H. O. Peitgen Blood flow induced cooling effect in radio frequency ablation for hepatic carcinoma 2008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem