Mostrar el registro sencillo del ítem
dc.contributor.author | González Suárez, Ana | es_ES |
dc.contributor.author | Trujillo Guillen, Macarena | es_ES |
dc.contributor.author | Burdío, Fernando | es_ES |
dc.contributor.author | Andaluz, Anna | es_ES |
dc.contributor.author | Berjano, Enrique | es_ES |
dc.date.accessioned | 2015-03-10T09:58:55Z | |
dc.date.issued | 2014-08 | |
dc.identifier.issn | 0094-2405 | |
dc.identifier.uri | http://hdl.handle.net/10251/47908 | |
dc.description.abstract | Purpose: To assess by means of computer simulations whether the heat sink effect inside a large vessel (portal vein) could protect the vessel wall from thermal damage close to an internally cooled electrode during radiofrequency (RF)-assisted resection. Methods: First, in vivo experiments were conducted to validate the computational model by comparing the experimental and computational thermal lesion shapes created around the vessels. Computer simulations were then carried out to study the effect of different factors such as device-tissue contact, vessel position, and vessel-device distance on temperature distributions and thermal lesion shapes near a large vessel, specifically the portal vein. Results: The geometries of thermal lesions around the vessels in thein vivo experiments were in agreement with the computer results. The thermal lesion shape created around the portal vein was significantly modified by the heat sink effect in all the cases considered. Thermal damage to the portal vein wall was inversely related to the vessel-device distance. It was also more pronounced when the device-tissue contact surface was reduced or when the vessel was parallel to the device or perpendicular to its distal end (blade zone), the vessel wall being damaged at distances less than 4.25 mm. Conclusions: The computational findings suggest that the heat sink effect could protect the portal vein wall for distances equal to or greater than 5 mm, regardless of its position and distance with respect to the RF-based device. © 2014 American Association of Physicists in Medicine. | es_ES |
dc.description.sponsorship | This work received financial support from the Spanish "Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion" Grant No. TEC2011-27133-C02-01 and -02, also from the Universitat Politecnica de Valencia (INNOVA11-01-5502; and PAID-06-11 Ref. 1988). A. Gonzalez-Suarez is the recipient of a Grant VALi+d (ACIF/2011/194) from the Generalitat Valenciana. E.B and F.B. declare a stock ownership in Apeiron Medical S.L. This company has a license for Patent U.S. 8.303.584, on which the device considered in this study is based. The remaining authors have no conflict of interest or financial ties to disclose. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Association of Physicists in Medicine: Medical Physics | es_ES |
dc.relation.ispartof | Medical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Blood flow | es_ES |
dc.subject | Computer modeling | es_ES |
dc.subject | Heat sink effect | es_ES |
dc.subject | In vivo model | es_ES |
dc.subject | Large vessels | es_ES |
dc.subject | Radiofrequency-assisted resection | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection? | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1118/1.4890103 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-02/ES/EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//INNOVA11-01- 5502/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11-1988/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2011%2F194/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | González Suárez, A.; Trujillo Guillen, M.; Burdío, F.; Andaluz, A.; Berjano, E. (2014). Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?. Medical Physics. 41(8):083301-1-83301-13. https://doi.org/10.1118/1.4890103 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1118/1.4890103 | es_ES |
dc.description.upvformatpinicio | 083301-1 | es_ES |
dc.description.upvformatpfin | 83301-13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 41 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 268634 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Poon, R. T., Fan, S. T., & Wong, J. (2005). Liver resection using a saline-linked radiofrequency dissecting sealer for transection of the liver. Journal of the American College of Surgeons, 200(2), 308-313. doi:10.1016/j.jamcollsurg.2004.10.008 | es_ES |
dc.description.references | Burdío, F., Grande, L., Berjano, E., Martinez-Serrano, M., Poves, I., Burdío, J. M., … Güemes, A. (2010). A new single-instrument technique for parenchyma division and hemostasis in liver resection: a clinical feasibility study. The American Journal of Surgery, 200(6), e75-e80. doi:10.1016/j.amjsurg.2010.02.020 | es_ES |
dc.description.references | Topp, S. A., McClurken, M., Lipson, D., Upadhya, G. A., Ritter, J. H., Linehan, D., & Strasberg, S. M. (2004). Saline-Linked Surface Radiofrequency Ablation. Annals of Surgery, 239(4), 518-527. doi:10.1097/01.sla.0000118927.83650.a4 | es_ES |
dc.description.references | Tepetes, K. (2008). Risks of the radiofrequency-assisted liver resection. Journal of Surgical Oncology, 97(2), 193-193. doi:10.1002/jso.20900 | es_ES |
dc.description.references | Marchal, F., Elias, D., Rauch, P., Zarnegar, R., Leroux, A., Stines, J., … Villemot, J. P. (2006). Prevention of Biliary Lesions That May Occur During Radiofrequency Ablation of the Liver. Annals of Surgery, 243(1), 82-88. doi:10.1097/01.sla.0000193831.39362.07 | es_ES |
dc.description.references | Sutton, P. A., Awad, S., Perkins, A. C., & Lobo, D. N. (2010). Comparison of lateral thermal spread using monopolar and bipolar diathermy, the Harmonic Scalpel™and the Ligasure™. British Journal of Surgery, 97(3), 428-433. doi:10.1002/bjs.6901 | es_ES |
dc.description.references | Lee, J. M., Han, J. K., Chang, J. M., Chung, S. Y., Kim, S. H., Lee, J. Y., … Choi, B. I. (2006). Radiofrequency Ablation of the Porcine Liver In Vivo: Increased Coagulation with an Internally Cooled Perfusion Electrode. Academic Radiology, 13(3), 343-352. doi:10.1016/j.acra.2005.10.020 | es_ES |
dc.description.references | Goldberg, S. N., Grassi, C. J., Cardella, J. F., Charboneau, J. W., Dodd, G. D., Dupuy, D. E., … Silverman, S. G. (2005). Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria. Radiology, 235(3), 728-739. doi:10.1148/radiol.2353042205 | es_ES |
dc.description.references | Pennes, H. H. (1948). Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 1(2), 93-122. doi:10.1152/jappl.1948.1.2.93 | es_ES |
dc.description.references | Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 | es_ES |
dc.description.references | Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004 | es_ES |
dc.description.references | Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24 | es_ES |
dc.description.references | Zhao, G., Zhang, H.-F., Guo, X.-J., Luo, D.-W., & Gao, D.-Y. (2007). Effect of blood flow and metabolism on multidimensional heat transfer during cryosurgery. Medical Engineering & Physics, 29(2), 205-215. doi:10.1016/j.medengphy.2006.03.005 | es_ES |
dc.description.references | T. Pätz T. Körger T. Preusser Simulation of radiofrequency ablation including water evaporation 2009 | es_ES |
dc.description.references | Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27 | es_ES |
dc.description.references | Chang, I. A. (2010). Considerations for Thermal Injury Analysis for RF Ablation Devices~!2009-09-09~!2009-12-19~!2010-02-04~! The Open Biomedical Engineering Journal, 4(2), 3-12. doi:10.2174/1874120701004020003 | es_ES |
dc.description.references | Tungjitkusolmun, S., Staelin, S. T., Haemmerich, D., Jang-Zern Tsai, Hong Cao, Webster, J. G., … Vorperian, V. R. (2002). Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Transactions on Biomedical Engineering, 49(1), 3-9. doi:10.1109/10.972834 | es_ES |
dc.description.references | Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317 | es_ES |
dc.description.references | Antunes, C. L., Almeida, T. R. O., & Raposeiro, N. (2012). Saline‐enhanced RF ablation on a cholangiocarcinoma: a numerical simulation. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 31(4), 1055-1066. doi:10.1108/03321641211227302 | es_ES |
dc.description.references | Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 | es_ES |
dc.description.references | Haemmerich, D., Wright, A. W., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: A finite element study. Medical & Biological Engineering & Computing, 41(3), 317-323. doi:10.1007/bf02348437 | es_ES |
dc.description.references | Berjano, E. J., Burdío, F., Navarro, A. C., Burdío, J. M., Güemes, A., Aldana, O., … Gregorio, M. A. de. (2006). Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study. Physiological Measurement, 27(10), N55-N66. doi:10.1088/0967-3334/27/10/n03 | es_ES |
dc.description.references | Burdío, F., Berjano, E. J., Navarro, A., Burdío, J. M., Grande, L., Gonzalez, A., … Lequerica, J. L. (2009). Research and development of a new RF-assisted device for bloodless rapid transection of the liver: Computational modeling and in vivo experiments. BioMedical Engineering OnLine, 8(1), 6. doi:10.1186/1475-925x-8-6 | es_ES |
dc.description.references | Modelling in Medicine and Biology VI. (2005). doi:10.2495/bio05 | es_ES |
dc.description.references | Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488 | es_ES |
dc.description.references | Berjano, E., & d’ Avila, A. (2013). Lumped Element Electrical Model based on Three Resistors for Electrical Impedance in Radiofrequency Cardiac Ablation: Estimations from Analytical Calculations and Clinical Data. The Open Biomedical Engineering Journal, 7(1), 62-70. doi:10.2174/1874120720130603001 | es_ES |
dc.description.references | Hannesson, P., Stridbeck, H., Lundstedt, C., Andren-Sandberg, Å., & Ihse, I. (1995). Intravascular Ultrasound of the Portal Vein — Normal Anatomy. Acta Radiologica, 36(4), 388-392. doi:10.3109/02841859509173394 | es_ES |
dc.description.references | Chen, X., & Saidel, G. M. (2008). Mathematical Modeling of Thermal Ablation in Tissue Surrounding a Large Vessel. Journal of Biomechanical Engineering, 131(1). doi:10.1115/1.2965374 | es_ES |
dc.description.references | T. Peng D. O'Neill S. Payne Mathematical study of the effects of different intrahepatic cooling on thermal ablation zones 2011 | es_ES |
dc.description.references | CIONI, G., D’ALIMONTE, P., CRISTANI, A., VENTURA, P., ABBATI, G., TINCANI, E., … VENTURA, E. (1992). Duplex-Doppler assessment of cirrhosis in patients with chronic compensated liver disease. Journal of Gastroenterology and Hepatology, 7(4), 382-384. doi:10.1111/j.1440-1746.1992.tb01003.x | es_ES |
dc.description.references | Ríos, J. S., Zalabardo, J. M. S., Burdio, F., Berjano, E., Moros, M., Gonzalez, A., … Güemes, A. (2011). Single Instrument for Hemostatic Control in Laparoscopic Partial Nephrectomy in a Porcine Model Without Renal Vascular Clamping. Journal of Endourology, 25(6), 1005-1011. doi:10.1089/end.2010.0557 | es_ES |
dc.description.references | Dos Santos, I., Haemmerich, D., Pinheiro, C., & da Rocha, A. (2008). Effect of variable heat transfer coefficient on tissue temperature next to a large vessel during radiofrequency tumor ablation. BioMedical Engineering OnLine, 7(1), 21. doi:10.1186/1475-925x-7-21 | es_ES |
dc.description.references | Consiglieri, L., Santos, I. dos, & Haemmerich, D. (2003). Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies. Physics in Medicine and Biology, 48(24), 4125-4134. doi:10.1088/0031-9155/48/24/010 | es_ES |
dc.description.references | Consiglieri, L. (2012). Continuum Models for the Cooling Effect of Blood Flow on Thermal Ablation Techniques. International Journal of Thermophysics, 33(5), 864-884. doi:10.1007/s10765-012-1194-0 | es_ES |
dc.description.references | Huang, H.-W. (2013). Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors. Medical Physics, 40(7), 073303. doi:10.1118/1.4811135 | es_ES |
dc.description.references | Welp, C., Siebers, S., Ermert, H., & Werner, J. (2006). Investigation of the influence of blood flow rate on large vessel cooling in hepatic radiofrequency ablation / Untersuchung des Einflusses der Blutflussgeschwindigkeit auf die Gefäßkühlung bei der Radiofrequenzablation von Lebertumoren. Biomedizinische Technik/Biomedical Engineering, 51(5_6), 337-346. doi:10.1515/bmt.2006.067 | es_ES |
dc.description.references | Lehmann, K. S., Ritz, J. P., Valdeig, S., Knappe, V., Schenk, A., Weihusen, A., … Frericks, B. B. (2009). Ex situ quantification of the cooling effect of liver vessels on radiofrequency ablation. Langenbeck’s Archives of Surgery, 394(3), 475-481. doi:10.1007/s00423-009-0480-1 | es_ES |
dc.description.references | Ng, K. K. C., Lam, C. M., Poon, R. T. P., Shek, T. W. H., Fan, S. T., & Wong, J. (2004). Delayed portal vein thrombosis after experimental radiofrequency ablation near the main portal vein. British Journal of Surgery, 91(5), 632-639. doi:10.1002/bjs.4500 | es_ES |
dc.description.references | Metcalfe, M. S., Mullin, E. J., Texler, M., Berry, D. P., Dennison, A. R., & Maddern, G. J. (2007). The safety and efficacy of radiofrequency and electrolytic ablation created adjacent to large hepatic veins in a porcine model. European Journal of Surgical Oncology (EJSO), 33(5), 662-667. doi:10.1016/j.ejso.2007.02.011 | es_ES |
dc.description.references | Bangard, C., Gossmann, A., Kasper, H. U., Hellmich, M., Fischer, J. H., Hölscher, A., … Stippel, D. L. (2006). Experimental Radiofrequency Ablation Near the Portal and the Hepatic Veins in Pigs: Differences in Efficacy of a Monopolar Ablation System. Journal of Surgical Research, 135(1), 113-119. doi:10.1016/j.jss.2006.02.026 | es_ES |
dc.description.references | T. Kröger T. Preusser H. O. Peitgen Blood flow induced cooling effect in radio frequency ablation for hepatic carcinoma 2008 | es_ES |