- -

Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Suárez, Ana es_ES
dc.contributor.author Trujillo Guillen, Macarena es_ES
dc.contributor.author Burdío, Fernando es_ES
dc.contributor.author Andaluz, Anna es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2015-03-10T09:58:55Z
dc.date.issued 2014-08
dc.identifier.issn 0094-2405
dc.identifier.uri http://hdl.handle.net/10251/47908
dc.description.abstract Purpose: To assess by means of computer simulations whether the heat sink effect inside a large vessel (portal vein) could protect the vessel wall from thermal damage close to an internally cooled electrode during radiofrequency (RF)-assisted resection. Methods: First, in vivo experiments were conducted to validate the computational model by comparing the experimental and computational thermal lesion shapes created around the vessels. Computer simulations were then carried out to study the effect of different factors such as device-tissue contact, vessel position, and vessel-device distance on temperature distributions and thermal lesion shapes near a large vessel, specifically the portal vein. Results: The geometries of thermal lesions around the vessels in thein vivo experiments were in agreement with the computer results. The thermal lesion shape created around the portal vein was significantly modified by the heat sink effect in all the cases considered. Thermal damage to the portal vein wall was inversely related to the vessel-device distance. It was also more pronounced when the device-tissue contact surface was reduced or when the vessel was parallel to the device or perpendicular to its distal end (blade zone), the vessel wall being damaged at distances less than 4.25 mm. Conclusions: The computational findings suggest that the heat sink effect could protect the portal vein wall for distances equal to or greater than 5 mm, regardless of its position and distance with respect to the RF-based device. © 2014 American Association of Physicists in Medicine. es_ES
dc.description.sponsorship This work received financial support from the Spanish "Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion" Grant No. TEC2011-27133-C02-01 and -02, also from the Universitat Politecnica de Valencia (INNOVA11-01-5502; and PAID-06-11 Ref. 1988). A. Gonzalez-Suarez is the recipient of a Grant VALi+d (ACIF/2011/194) from the Generalitat Valenciana. E.B and F.B. declare a stock ownership in Apeiron Medical S.L. This company has a license for Patent U.S. 8.303.584, on which the device considered in this study is based. The remaining authors have no conflict of interest or financial ties to disclose. en_EN
dc.language Inglés es_ES
dc.publisher American Association of Physicists in Medicine: Medical Physics es_ES
dc.relation.ispartof Medical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Blood flow es_ES
dc.subject Computer modeling es_ES
dc.subject Heat sink effect es_ES
dc.subject In vivo model es_ES
dc.subject Large vessels es_ES
dc.subject Radiofrequency-assisted resection es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection? es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1118/1.4890103
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-02/ES/EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//INNOVA11-01- 5502/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11-1988/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2011%2F194/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation González Suárez, A.; Trujillo Guillen, M.; Burdío, F.; Andaluz, A.; Berjano, E. (2014). Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?. Medical Physics. 41(8):083301-1-83301-13. https://doi.org/10.1118/1.4890103 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1118/1.4890103 es_ES
dc.description.upvformatpinicio 083301-1 es_ES
dc.description.upvformatpfin 83301-13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 41 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 268634
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Poon, R. T., Fan, S. T., & Wong, J. (2005). Liver resection using a saline-linked radiofrequency dissecting sealer for transection of the liver. Journal of the American College of Surgeons, 200(2), 308-313. doi:10.1016/j.jamcollsurg.2004.10.008 es_ES
dc.description.references Burdío, F., Grande, L., Berjano, E., Martinez-Serrano, M., Poves, I., Burdío, J. M., … Güemes, A. (2010). A new single-instrument technique for parenchyma division and hemostasis in liver resection: a clinical feasibility study. The American Journal of Surgery, 200(6), e75-e80. doi:10.1016/j.amjsurg.2010.02.020 es_ES
dc.description.references Topp, S. A., McClurken, M., Lipson, D., Upadhya, G. A., Ritter, J. H., Linehan, D., & Strasberg, S. M. (2004). Saline-Linked Surface Radiofrequency Ablation. Annals of Surgery, 239(4), 518-527. doi:10.1097/01.sla.0000118927.83650.a4 es_ES
dc.description.references Tepetes, K. (2008). Risks of the radiofrequency-assisted liver resection. Journal of Surgical Oncology, 97(2), 193-193. doi:10.1002/jso.20900 es_ES
dc.description.references Marchal, F., Elias, D., Rauch, P., Zarnegar, R., Leroux, A., Stines, J., … Villemot, J. P. (2006). Prevention of Biliary Lesions That May Occur During Radiofrequency Ablation of the Liver. Annals of Surgery, 243(1), 82-88. doi:10.1097/01.sla.0000193831.39362.07 es_ES
dc.description.references Sutton, P. A., Awad, S., Perkins, A. C., & Lobo, D. N. (2010). Comparison of lateral thermal spread using monopolar and bipolar diathermy, the Harmonic Scalpel™and the Ligasure™. British Journal of Surgery, 97(3), 428-433. doi:10.1002/bjs.6901 es_ES
dc.description.references Lee, J. M., Han, J. K., Chang, J. M., Chung, S. Y., Kim, S. H., Lee, J. Y., … Choi, B. I. (2006). Radiofrequency Ablation of the Porcine Liver In Vivo: Increased Coagulation with an Internally Cooled Perfusion Electrode. Academic Radiology, 13(3), 343-352. doi:10.1016/j.acra.2005.10.020 es_ES
dc.description.references Goldberg, S. N., Grassi, C. J., Cardella, J. F., Charboneau, J. W., Dodd, G. D., Dupuy, D. E., … Silverman, S. G. (2005). Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria. Radiology, 235(3), 728-739. doi:10.1148/radiol.2353042205 es_ES
dc.description.references Pennes, H. H. (1948). Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 1(2), 93-122. doi:10.1152/jappl.1948.1.2.93 es_ES
dc.description.references Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 es_ES
dc.description.references Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004 es_ES
dc.description.references Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24 es_ES
dc.description.references Zhao, G., Zhang, H.-F., Guo, X.-J., Luo, D.-W., & Gao, D.-Y. (2007). Effect of blood flow and metabolism on multidimensional heat transfer during cryosurgery. Medical Engineering & Physics, 29(2), 205-215. doi:10.1016/j.medengphy.2006.03.005 es_ES
dc.description.references T. Pätz T. Körger T. Preusser Simulation of radiofrequency ablation including water evaporation 2009 es_ES
dc.description.references Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27 es_ES
dc.description.references Chang, I. A. (2010). Considerations for Thermal Injury Analysis for RF Ablation Devices~!2009-09-09~!2009-12-19~!2010-02-04~! The Open Biomedical Engineering Journal, 4(2), 3-12. doi:10.2174/1874120701004020003 es_ES
dc.description.references Tungjitkusolmun, S., Staelin, S. T., Haemmerich, D., Jang-Zern Tsai, Hong Cao, Webster, J. G., … Vorperian, V. R. (2002). Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Transactions on Biomedical Engineering, 49(1), 3-9. doi:10.1109/10.972834 es_ES
dc.description.references Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317 es_ES
dc.description.references Antunes, C. L., Almeida, T. R. O., & Raposeiro, N. (2012). Saline‐enhanced RF ablation on a cholangiocarcinoma: a numerical simulation. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 31(4), 1055-1066. doi:10.1108/03321641211227302 es_ES
dc.description.references Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 es_ES
dc.description.references Haemmerich, D., Wright, A. W., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: A finite element study. Medical & Biological Engineering & Computing, 41(3), 317-323. doi:10.1007/bf02348437 es_ES
dc.description.references Berjano, E. J., Burdío, F., Navarro, A. C., Burdío, J. M., Güemes, A., Aldana, O., … Gregorio, M. A. de. (2006). Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study. Physiological Measurement, 27(10), N55-N66. doi:10.1088/0967-3334/27/10/n03 es_ES
dc.description.references Burdío, F., Berjano, E. J., Navarro, A., Burdío, J. M., Grande, L., Gonzalez, A., … Lequerica, J. L. (2009). Research and development of a new RF-assisted device for bloodless rapid transection of the liver: Computational modeling and in vivo experiments. BioMedical Engineering OnLine, 8(1), 6. doi:10.1186/1475-925x-8-6 es_ES
dc.description.references Modelling in Medicine and Biology VI. (2005). doi:10.2495/bio05 es_ES
dc.description.references Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488 es_ES
dc.description.references Berjano, E., & d’ Avila, A. (2013). Lumped Element Electrical Model based on Three Resistors for Electrical Impedance in Radiofrequency Cardiac Ablation: Estimations from Analytical Calculations and Clinical Data. The Open Biomedical Engineering Journal, 7(1), 62-70. doi:10.2174/1874120720130603001 es_ES
dc.description.references Hannesson, P., Stridbeck, H., Lundstedt, C., Andren-Sandberg, Å., & Ihse, I. (1995). Intravascular Ultrasound of the Portal Vein — Normal Anatomy. Acta Radiologica, 36(4), 388-392. doi:10.3109/02841859509173394 es_ES
dc.description.references Chen, X., & Saidel, G. M. (2008). Mathematical Modeling of Thermal Ablation in Tissue Surrounding a Large Vessel. Journal of Biomechanical Engineering, 131(1). doi:10.1115/1.2965374 es_ES
dc.description.references T. Peng D. O'Neill S. Payne Mathematical study of the effects of different intrahepatic cooling on thermal ablation zones 2011 es_ES
dc.description.references CIONI, G., D’ALIMONTE, P., CRISTANI, A., VENTURA, P., ABBATI, G., TINCANI, E., … VENTURA, E. (1992). Duplex-Doppler assessment of cirrhosis in patients with chronic compensated liver disease. Journal of Gastroenterology and Hepatology, 7(4), 382-384. doi:10.1111/j.1440-1746.1992.tb01003.x es_ES
dc.description.references Ríos, J. S., Zalabardo, J. M. S., Burdio, F., Berjano, E., Moros, M., Gonzalez, A., … Güemes, A. (2011). Single Instrument for Hemostatic Control in Laparoscopic Partial Nephrectomy in a Porcine Model Without Renal Vascular Clamping. Journal of Endourology, 25(6), 1005-1011. doi:10.1089/end.2010.0557 es_ES
dc.description.references Dos Santos, I., Haemmerich, D., Pinheiro, C., & da Rocha, A. (2008). Effect of variable heat transfer coefficient on tissue temperature next to a large vessel during radiofrequency tumor ablation. BioMedical Engineering OnLine, 7(1), 21. doi:10.1186/1475-925x-7-21 es_ES
dc.description.references Consiglieri, L., Santos, I. dos, & Haemmerich, D. (2003). Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies. Physics in Medicine and Biology, 48(24), 4125-4134. doi:10.1088/0031-9155/48/24/010 es_ES
dc.description.references Consiglieri, L. (2012). Continuum Models for the Cooling Effect of Blood Flow on Thermal Ablation Techniques. International Journal of Thermophysics, 33(5), 864-884. doi:10.1007/s10765-012-1194-0 es_ES
dc.description.references Huang, H.-W. (2013). Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors. Medical Physics, 40(7), 073303. doi:10.1118/1.4811135 es_ES
dc.description.references Welp, C., Siebers, S., Ermert, H., & Werner, J. (2006). Investigation of the influence of blood flow rate on large vessel cooling in hepatic radiofrequency ablation / Untersuchung des Einflusses der Blutflussgeschwindigkeit auf die Gefäßkühlung bei der Radiofrequenzablation von Lebertumoren. Biomedizinische Technik/Biomedical Engineering, 51(5_6), 337-346. doi:10.1515/bmt.2006.067 es_ES
dc.description.references Lehmann, K. S., Ritz, J. P., Valdeig, S., Knappe, V., Schenk, A., Weihusen, A., … Frericks, B. B. (2009). Ex situ quantification of the cooling effect of liver vessels on radiofrequency ablation. Langenbeck’s Archives of Surgery, 394(3), 475-481. doi:10.1007/s00423-009-0480-1 es_ES
dc.description.references Ng, K. K. C., Lam, C. M., Poon, R. T. P., Shek, T. W. H., Fan, S. T., & Wong, J. (2004). Delayed portal vein thrombosis after experimental radiofrequency ablation near the main portal vein. British Journal of Surgery, 91(5), 632-639. doi:10.1002/bjs.4500 es_ES
dc.description.references Metcalfe, M. S., Mullin, E. J., Texler, M., Berry, D. P., Dennison, A. R., & Maddern, G. J. (2007). The safety and efficacy of radiofrequency and electrolytic ablation created adjacent to large hepatic veins in a porcine model. European Journal of Surgical Oncology (EJSO), 33(5), 662-667. doi:10.1016/j.ejso.2007.02.011 es_ES
dc.description.references Bangard, C., Gossmann, A., Kasper, H. U., Hellmich, M., Fischer, J. H., Hölscher, A., … Stippel, D. L. (2006). Experimental Radiofrequency Ablation Near the Portal and the Hepatic Veins in Pigs: Differences in Efficacy of a Monopolar Ablation System. Journal of Surgical Research, 135(1), 113-119. doi:10.1016/j.jss.2006.02.026 es_ES
dc.description.references T. Kröger T. Preusser H. O. Peitgen Blood flow induced cooling effect in radio frequency ablation for hepatic carcinoma 2008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem