- -

Fibronectin adsorption and cell response on electroactive poly (vinylidene fluoride) films

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fibronectin adsorption and cell response on electroactive poly (vinylidene fluoride) films

Mostrar el registro completo del ítem

Ribeiro, C.; Panadero Pérez, JA.; Sencadas, VJGDS.; Lanceros Mendez, S.; Tamaño Machiavello, MN.; Moratal Pérez, D.; Salmerón Sánchez, M.... (2012). Fibronectin adsorption and cell response on electroactive poly (vinylidene fluoride) films. Biomedical Materials. 7(3):35004-35014. https://doi.org/10.1088/1748-6041/7/3/035004

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/48022

Ficheros en el ítem

Metadatos del ítem

Título: Fibronectin adsorption and cell response on electroactive poly (vinylidene fluoride) films
Autor: Ribeiro, Clarisse Panadero Pérez, Juan Alberto Sencadas, Vitor Joao Gomes Da Silva Lanceros Mendez, Senen Tamaño Machiavello, María Noel Moratal Pérez, David Salmerón Sánchez, Manuel Gómez Ribelles, José Luís
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
Due to the large potential of electroactive materials in novel tissue engineering strategies, the aim of this work is to determine if the crystalline phase and/or the surface electrical charge of electroactive poly(vinylidene ...[+]
Palabras clave: Poly(vinylidene fluoride); , Fibronectin; , Piezoelectric , MC3T3-E1 preosteoeblasts , Soft matter , Liquids , Polymers , Medical physics , Biological physics , Chemical physics
Derechos de uso: Reserva de todos los derechos
Fuente:
Biomedical Materials. (issn: 1748-6041 ) (eissn: 1748-605X )
DOI: 10.1088/1748-6041/7/3/035004
Editorial:
IOP Publishing: Hybrid Open Access
Versión del editor: http://dx.doi.org/10.1088/1748-6041/7/3/035004
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/
info:eu-repo/grantAgreement/MICINN//EUI2008-00126/ES/SMART JOINT IMPLANTS USING BIONANOCOMPOSITES/
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F64586%2F2009/PT/ACTIVE BIOMATERIALS FOR CELL CULTURE UNDER MECHANICAL STIMULUS APPLIED TO CARTILAGE TISSUE ENGINEERING/
Agradecimientos:
This work is funded by FEDER funds through the 'Programa Operacional Factores de Competitividade-COMPETE' and by national funds by FCT-Fundacao para a Ciencia e a Tecnologia, project reference NANO/NMed-SD/0156/2007. CR ...[+]
Tipo: Artículo

References

Shard, A. G., & Tomlins, P. E. (2006). Biocompatibility and the efficacy of medical implants. Regenerative Medicine, 1(6), 789-800. doi:10.2217/17460751.1.6.789

Klee, D., Ademovic, Z., Bosserhoff, A., Hoecker, H., Maziolis, G., & Erli, H.-J. (2003). Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials, 24(21), 3663-3670. doi:10.1016/s0142-9612(03)00235-7

Guerra, N. B., González-García, C., Llopis, V., Rodríguez-Hernández, J. C., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Subtle variations in polymer chemistry modulate substrate stiffness and fibronectin activity. Soft Matter, 6(19), 4748. doi:10.1039/c0sm00074d [+]
Shard, A. G., & Tomlins, P. E. (2006). Biocompatibility and the efficacy of medical implants. Regenerative Medicine, 1(6), 789-800. doi:10.2217/17460751.1.6.789

Klee, D., Ademovic, Z., Bosserhoff, A., Hoecker, H., Maziolis, G., & Erli, H.-J. (2003). Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials, 24(21), 3663-3670. doi:10.1016/s0142-9612(03)00235-7

Guerra, N. B., González-García, C., Llopis, V., Rodríguez-Hernández, J. C., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Subtle variations in polymer chemistry modulate substrate stiffness and fibronectin activity. Soft Matter, 6(19), 4748. doi:10.1039/c0sm00074d

Altankov, G., & Groth, T. (1994). Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9-10), 732-737. doi:10.1007/bf00120366

Avnur, Z., & Geiger, B. (1981). The removal of extracellular fibronectin from areas of cell-substrate contact. Cell, 25(1), 121-132. doi:10.1016/0092-8674(81)90236-1

Altankov, G., Groth, T., Krasteva, N., Albrecht, W., & Paul, D. (1997). Morphological evidence for a different fibronectin receptor organization and function during fibroblast adhesion on hydrophilic and hydrophobic glass substrata. Journal of Biomaterials Science, Polymer Edition, 8(9), 721-740. doi:10.1163/156856297x00524

Anselme, K. (2000). Osteoblast adhesion on biomaterials. Biomaterials, 21(7), 667-681. doi:10.1016/s0142-9612(99)00242-2

Wilson, C. J., Clegg, R. E., Leavesley, D. I., & Pearcy, M. J. (2005). Mediation of Biomaterial–Cell Interactions by Adsorbed Proteins: A Review. Tissue Engineering, 11(1-2), 1-18. doi:10.1089/ten.2005.11.1

Whittle, J. D., Bullett, N. A., Short, R. D., Ian Douglas, C. W., Hollander, A. P., & Davies, J. (2002). Adsorption of vitronectin, collagen and immunoglobulin-G to plasma polymer surfaces by enzyme linked immunosorbent assay (ELISA). Journal of Materials Chemistry, 12(9), 2726-2732. doi:10.1039/b201471h

Barrias, C. C., Martins, M. C. L., Almeida-Porada, G., Barbosa, M. A., & Granja, P. L. (2009). The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials, 30(3), 307-316. doi:10.1016/j.biomaterials.2008.09.048

Okada, S., Ito, H., Nagai, A., Komotori, J., & Imai, H. (2010). Adhesion of osteoblast-like cells on nanostructured hydroxyapatite. Acta Biomaterialia, 6(2), 591-597. doi:10.1016/j.actbio.2009.07.037

Weber, N., Lee, Y.-S., Shanmugasundaram, S., Jaffe, M., & Arinzeh, T. L. (2010). Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomaterialia, 6(9), 3550-3556. doi:10.1016/j.actbio.2010.03.035

Nalwa, H. S. (1995). Ferroelectric Polymers. doi:10.1201/9781482295450

Branciforti, M. C., Sencadas, V., Lanceros-Mendez, S., & Gregorio, R. (2007). New technique of processing highly oriented poly(vinylidene fluoride) films exclusively in the β phase. Journal of Polymer Science Part B: Polymer Physics, 45(19), 2793-2801. doi:10.1002/polb.21239

Sencadas, V., Gregorio Filho, R., & Lanceros-Mendez, S. (2006). Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 352(21-22), 2226-2229. doi:10.1016/j.jnoncrysol.2006.02.052

Sencadas, V., Gregorio, R., & Lanceros-Méndez, S. (2009). α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science, Part B, 48(3), 514-525. doi:10.1080/00222340902837527

Gomes, J., Serrado Nunes, J., Sencadas, V., & Lanceros-Mendez, S. (2010). Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Materials and Structures, 19(6), 065010. doi:10.1088/0964-1726/19/6/065010

Serrado Nunes, J., Wu, A., Gomes, J., Sencadas, V., Vilarinho, P. M., & Lanceros-Méndez, S. (2009). Relationship between the microstructure and the microscopic piezoelectric response of the α- and β-phases of poly(vinylidene fluoride). Applied Physics A, 95(3), 875-880. doi:10.1007/s00339-009-5089-2

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/tsmc.1979.4310076

Sigal, G. B., Mrksich, M., & Whitesides, G. M. (1998). Effect of Surface Wettability on the Adsorption of Proteins and Detergents. Journal of the American Chemical Society, 120(14), 3464-3473. doi:10.1021/ja970819l

Van Wachem, P. B., Beugeling, T., Feijen, J., Bantjes, A., Detmers, J. P., & van Aken, W. G. (1985). Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials, 6(6), 403-408. doi:10.1016/0142-9612(85)90101-2

Hernández, J. C. R., Salmerón Sánchez, M., Soria, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2007). Substrate Chemistry-Dependent Conformations of Single Laminin Molecules on Polymer Surfaces are Revealed by the Phase Signal of Atomic Force Microscopy. Biophysical Journal, 93(1), 202-207. doi:10.1529/biophysj.106.102491

Bar-Cohen, Y. (Ed.). (2004). Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition. doi:10.1117/3.547465

Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3

Tsapikouni, T. S., & Missirlis, Y. F. (2008). Protein–material interactions: From micro-to-nano scale. Materials Science and Engineering: B, 152(1-3), 2-7. doi:10.1016/j.mseb.2008.06.007

Michael, K. E., Vernekar, V. N., Keselowsky, B. G., Meredith, J. C., Latour, R. A., & García, A. J. (2003). Adsorption-Induced Conformational Changes in Fibronectin Due to Interactions with Well-Defined Surface Chemistries. Langmuir, 19(19), 8033-8040. doi:10.1021/la034810a

Schmidt, D. R., Waldeck, H., & Kao, W. J. (2009). Protein Adsorption to Biomaterials. Biological Interactions on Materials Surfaces, 1-18. doi:10.1007/978-0-387-98161-1_1

Comelles, J., Estévez, M., Martínez, E., & Samitier, J. (2010). The role of surface energy of technical polymers in serum protein adsorption and MG-63 cells adhesion. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 44-51. doi:10.1016/j.nano.2009.05.006

Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785

Llopis-Hernández, V., Rico, P., Ballester-Beltrán, J., Moratal, D., & Salmerón-Sánchez, M. (2011). Role of Surface Chemistry in Protein Remodeling at the Cell-Material Interface. PLoS ONE, 6(5), e19610. doi:10.1371/journal.pone.0019610

Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057

Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem