- -

Fibronectin adsorption and cell response on electroactive poly (vinylidene fluoride) films

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fibronectin adsorption and cell response on electroactive poly (vinylidene fluoride) films

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ribeiro, Clarisse es_ES
dc.contributor.author Panadero Pérez, Juan Alberto es_ES
dc.contributor.author Sencadas, Vitor Joao Gomes Da Silva es_ES
dc.contributor.author Lanceros Mendez, Senen es_ES
dc.contributor.author Tamaño Machiavello, María Noel es_ES
dc.contributor.author Moratal Pérez, David es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.date.accessioned 2015-03-12T11:05:15Z
dc.date.available 2015-03-12T11:05:15Z
dc.date.issued 2012
dc.identifier.issn 1748-6041
dc.identifier.uri http://hdl.handle.net/10251/48022
dc.description.abstract Due to the large potential of electroactive materials in novel tissue engineering strategies, the aim of this work is to determine if the crystalline phase and/or the surface electrical charge of electroactive poly(vinylidene fluoride), PVDF, have influence on the biological response in monolayer cell culture. Non-polar α-PVDF and electroactive β-PVDF were prepared. The β-PVDF films were poled by corona discharge to show negative or positive electrical surface charge density. It has been concluded that hydrophilicity of the PVDF substrates depends significantly on crystalline phase and polarity. Furthermore, by means of atomic force microscopy and an enzyme-linked immunosorbent assay test, it has been shown that positive or negative poling strongly influences the behavior of β-PVDF supports with respect to fibronectin (FN) adsorption, varying the exhibition of adhesion ligands of adsorbed FN. Culture of MC3T3-E1 pre-osteoeblasts proved that cell proliferation depends on surface polarity as well. These results open the viability of cell culture stimulation by mechanical deformation of a piezoelectric substrate that results in varying electrical charge densities on the substrate surface. es_ES
dc.description.sponsorship This work is funded by FEDER funds through the 'Programa Operacional Factores de Competitividade-COMPETE' and by national funds by FCT-Fundacao para a Ciencia e a Tecnologia, project reference NANO/NMed-SD/0156/2007. CR thanks the INL for a PhD grant. VS and JAP thank the FCT for the SFRH/BPD/63148/2009 and SFRH/BD/64586/2009/grants, respectively. JLGR acknowledges the support of the Spanish Ministry of Education through project no MAT2010-21611-C03-01 (including the FEDER financial support), project EUI2008-00126 and funding in the Centro de Investigacion Principe Felipe in the field of Regenerative Medicine through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana) and the Instituto de Salud Carlos III (Ministry of Science and Innovation). The authors thank Armando Ferreira for the help with the contact angle measurements and CENTI, Portugal, for allowing the use of the set-up. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Biomedical Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Poly(vinylidene fluoride); es_ES
dc.subject Fibronectin; es_ES
dc.subject Piezoelectric es_ES
dc.subject MC3T3-E1 preosteoeblasts es_ES
dc.subject Soft matter es_ES
dc.subject Liquids es_ES
dc.subject Polymers es_ES
dc.subject Medical physics es_ES
dc.subject Biological physics es_ES
dc.subject Chemical physics es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Fibronectin adsorption and cell response on electroactive poly (vinylidene fluoride) films es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1748-6041/7/3/035004
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//EUI2008-00126/ES/SMART JOINT IMPLANTS USING BIONANOCOMPOSITES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F64586%2F2009/PT/ACTIVE BIOMATERIALS FOR CELL CULTURE UNDER MECHANICAL STIMULUS APPLIED TO CARTILAGE TISSUE ENGINEERING/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Ribeiro, C.; Panadero Pérez, JA.; Sencadas, VJGDS.; Lanceros Mendez, S.; Tamaño Machiavello, MN.; Moratal Pérez, D.; Salmerón Sánchez, M.... (2012). Fibronectin adsorption and cell response on electroactive poly (vinylidene fluoride) films. Biomedical Materials. 7(3):35004-35014. https://doi.org/10.1088/1748-6041/7/3/035004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/1748-6041/7/3/035004 es_ES
dc.description.upvformatpinicio 35004 es_ES
dc.description.upvformatpfin 35014 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 234720
dc.identifier.eissn 1748-605X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Shard, A. G., & Tomlins, P. E. (2006). Biocompatibility and the efficacy of medical implants. Regenerative Medicine, 1(6), 789-800. doi:10.2217/17460751.1.6.789 es_ES
dc.description.references Klee, D., Ademovic, Z., Bosserhoff, A., Hoecker, H., Maziolis, G., & Erli, H.-J. (2003). Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials, 24(21), 3663-3670. doi:10.1016/s0142-9612(03)00235-7 es_ES
dc.description.references Guerra, N. B., González-García, C., Llopis, V., Rodríguez-Hernández, J. C., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Subtle variations in polymer chemistry modulate substrate stiffness and fibronectin activity. Soft Matter, 6(19), 4748. doi:10.1039/c0sm00074d es_ES
dc.description.references Altankov, G., & Groth, T. (1994). Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9-10), 732-737. doi:10.1007/bf00120366 es_ES
dc.description.references Avnur, Z., & Geiger, B. (1981). The removal of extracellular fibronectin from areas of cell-substrate contact. Cell, 25(1), 121-132. doi:10.1016/0092-8674(81)90236-1 es_ES
dc.description.references Altankov, G., Groth, T., Krasteva, N., Albrecht, W., & Paul, D. (1997). Morphological evidence for a different fibronectin receptor organization and function during fibroblast adhesion on hydrophilic and hydrophobic glass substrata. Journal of Biomaterials Science, Polymer Edition, 8(9), 721-740. doi:10.1163/156856297x00524 es_ES
dc.description.references Anselme, K. (2000). Osteoblast adhesion on biomaterials. Biomaterials, 21(7), 667-681. doi:10.1016/s0142-9612(99)00242-2 es_ES
dc.description.references Wilson, C. J., Clegg, R. E., Leavesley, D. I., & Pearcy, M. J. (2005). Mediation of Biomaterial–Cell Interactions by Adsorbed Proteins: A Review. Tissue Engineering, 11(1-2), 1-18. doi:10.1089/ten.2005.11.1 es_ES
dc.description.references Whittle, J. D., Bullett, N. A., Short, R. D., Ian Douglas, C. W., Hollander, A. P., & Davies, J. (2002). Adsorption of vitronectin, collagen and immunoglobulin-G to plasma polymer surfaces by enzyme linked immunosorbent assay (ELISA). Journal of Materials Chemistry, 12(9), 2726-2732. doi:10.1039/b201471h es_ES
dc.description.references Barrias, C. C., Martins, M. C. L., Almeida-Porada, G., Barbosa, M. A., & Granja, P. L. (2009). The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials, 30(3), 307-316. doi:10.1016/j.biomaterials.2008.09.048 es_ES
dc.description.references Okada, S., Ito, H., Nagai, A., Komotori, J., & Imai, H. (2010). Adhesion of osteoblast-like cells on nanostructured hydroxyapatite. Acta Biomaterialia, 6(2), 591-597. doi:10.1016/j.actbio.2009.07.037 es_ES
dc.description.references Weber, N., Lee, Y.-S., Shanmugasundaram, S., Jaffe, M., & Arinzeh, T. L. (2010). Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomaterialia, 6(9), 3550-3556. doi:10.1016/j.actbio.2010.03.035 es_ES
dc.description.references Nalwa, H. S. (1995). Ferroelectric Polymers. doi:10.1201/9781482295450 es_ES
dc.description.references Branciforti, M. C., Sencadas, V., Lanceros-Mendez, S., & Gregorio, R. (2007). New technique of processing highly oriented poly(vinylidene fluoride) films exclusively in the β phase. Journal of Polymer Science Part B: Polymer Physics, 45(19), 2793-2801. doi:10.1002/polb.21239 es_ES
dc.description.references Sencadas, V., Gregorio Filho, R., & Lanceros-Mendez, S. (2006). Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 352(21-22), 2226-2229. doi:10.1016/j.jnoncrysol.2006.02.052 es_ES
dc.description.references Sencadas, V., Gregorio, R., & Lanceros-Méndez, S. (2009). α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science, Part B, 48(3), 514-525. doi:10.1080/00222340902837527 es_ES
dc.description.references Gomes, J., Serrado Nunes, J., Sencadas, V., & Lanceros-Mendez, S. (2010). Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Materials and Structures, 19(6), 065010. doi:10.1088/0964-1726/19/6/065010 es_ES
dc.description.references Serrado Nunes, J., Wu, A., Gomes, J., Sencadas, V., Vilarinho, P. M., & Lanceros-Méndez, S. (2009). Relationship between the microstructure and the microscopic piezoelectric response of the α- and β-phases of poly(vinylidene fluoride). Applied Physics A, 95(3), 875-880. doi:10.1007/s00339-009-5089-2 es_ES
dc.description.references Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/tsmc.1979.4310076 es_ES
dc.description.references Sigal, G. B., Mrksich, M., & Whitesides, G. M. (1998). Effect of Surface Wettability on the Adsorption of Proteins and Detergents. Journal of the American Chemical Society, 120(14), 3464-3473. doi:10.1021/ja970819l es_ES
dc.description.references Van Wachem, P. B., Beugeling, T., Feijen, J., Bantjes, A., Detmers, J. P., & van Aken, W. G. (1985). Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials, 6(6), 403-408. doi:10.1016/0142-9612(85)90101-2 es_ES
dc.description.references Hernández, J. C. R., Salmerón Sánchez, M., Soria, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2007). Substrate Chemistry-Dependent Conformations of Single Laminin Molecules on Polymer Surfaces are Revealed by the Phase Signal of Atomic Force Microscopy. Biophysical Journal, 93(1), 202-207. doi:10.1529/biophysj.106.102491 es_ES
dc.description.references Bar-Cohen, Y. (Ed.). (2004). Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition. doi:10.1117/3.547465 es_ES
dc.description.references Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3 es_ES
dc.description.references Tsapikouni, T. S., & Missirlis, Y. F. (2008). Protein–material interactions: From micro-to-nano scale. Materials Science and Engineering: B, 152(1-3), 2-7. doi:10.1016/j.mseb.2008.06.007 es_ES
dc.description.references Michael, K. E., Vernekar, V. N., Keselowsky, B. G., Meredith, J. C., Latour, R. A., & García, A. J. (2003). Adsorption-Induced Conformational Changes in Fibronectin Due to Interactions with Well-Defined Surface Chemistries. Langmuir, 19(19), 8033-8040. doi:10.1021/la034810a es_ES
dc.description.references Schmidt, D. R., Waldeck, H., & Kao, W. J. (2009). Protein Adsorption to Biomaterials. Biological Interactions on Materials Surfaces, 1-18. doi:10.1007/978-0-387-98161-1_1 es_ES
dc.description.references Comelles, J., Estévez, M., Martínez, E., & Samitier, J. (2010). The role of surface energy of technical polymers in serum protein adsorption and MG-63 cells adhesion. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 44-51. doi:10.1016/j.nano.2009.05.006 es_ES
dc.description.references Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785 es_ES
dc.description.references Llopis-Hernández, V., Rico, P., Ballester-Beltrán, J., Moratal, D., & Salmerón-Sánchez, M. (2011). Role of Surface Chemistry in Protein Remodeling at the Cell-Material Interface. PLoS ONE, 6(5), e19610. doi:10.1371/journal.pone.0019610 es_ES
dc.description.references Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057 es_ES
dc.description.references Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem