Mostrar el registro sencillo del ítem
dc.contributor.author | Ribeiro, Clarisse | es_ES |
dc.contributor.author | Panadero Pérez, Juan Alberto | es_ES |
dc.contributor.author | Sencadas, Vitor Joao Gomes Da Silva | es_ES |
dc.contributor.author | Lanceros Mendez, Senen | es_ES |
dc.contributor.author | Tamaño Machiavello, María Noel | es_ES |
dc.contributor.author | Moratal Pérez, David | es_ES |
dc.contributor.author | Salmerón Sánchez, Manuel | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.date.accessioned | 2015-03-12T11:05:15Z | |
dc.date.available | 2015-03-12T11:05:15Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1748-6041 | |
dc.identifier.uri | http://hdl.handle.net/10251/48022 | |
dc.description.abstract | Due to the large potential of electroactive materials in novel tissue engineering strategies, the aim of this work is to determine if the crystalline phase and/or the surface electrical charge of electroactive poly(vinylidene fluoride), PVDF, have influence on the biological response in monolayer cell culture. Non-polar α-PVDF and electroactive β-PVDF were prepared. The β-PVDF films were poled by corona discharge to show negative or positive electrical surface charge density. It has been concluded that hydrophilicity of the PVDF substrates depends significantly on crystalline phase and polarity. Furthermore, by means of atomic force microscopy and an enzyme-linked immunosorbent assay test, it has been shown that positive or negative poling strongly influences the behavior of β-PVDF supports with respect to fibronectin (FN) adsorption, varying the exhibition of adhesion ligands of adsorbed FN. Culture of MC3T3-E1 pre-osteoeblasts proved that cell proliferation depends on surface polarity as well. These results open the viability of cell culture stimulation by mechanical deformation of a piezoelectric substrate that results in varying electrical charge densities on the substrate surface. | es_ES |
dc.description.sponsorship | This work is funded by FEDER funds through the 'Programa Operacional Factores de Competitividade-COMPETE' and by national funds by FCT-Fundacao para a Ciencia e a Tecnologia, project reference NANO/NMed-SD/0156/2007. CR thanks the INL for a PhD grant. VS and JAP thank the FCT for the SFRH/BPD/63148/2009 and SFRH/BD/64586/2009/grants, respectively. JLGR acknowledges the support of the Spanish Ministry of Education through project no MAT2010-21611-C03-01 (including the FEDER financial support), project EUI2008-00126 and funding in the Centro de Investigacion Principe Felipe in the field of Regenerative Medicine through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana) and the Instituto de Salud Carlos III (Ministry of Science and Innovation). The authors thank Armando Ferreira for the help with the contact angle measurements and CENTI, Portugal, for allowing the use of the set-up. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Hybrid Open Access | es_ES |
dc.relation.ispartof | Biomedical Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Poly(vinylidene fluoride); | es_ES |
dc.subject | Fibronectin; | es_ES |
dc.subject | Piezoelectric | es_ES |
dc.subject | MC3T3-E1 preosteoeblasts | es_ES |
dc.subject | Soft matter | es_ES |
dc.subject | Liquids | es_ES |
dc.subject | Polymers | es_ES |
dc.subject | Medical physics | es_ES |
dc.subject | Biological physics | es_ES |
dc.subject | Chemical physics | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Fibronectin adsorption and cell response on electroactive poly (vinylidene fluoride) films | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1748-6041/7/3/035004 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//EUI2008-00126/ES/SMART JOINT IMPLANTS USING BIONANOCOMPOSITES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F64586%2F2009/PT/ACTIVE BIOMATERIALS FOR CELL CULTURE UNDER MECHANICAL STIMULUS APPLIED TO CARTILAGE TISSUE ENGINEERING/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.description.bibliographicCitation | Ribeiro, C.; Panadero Pérez, JA.; Sencadas, VJGDS.; Lanceros Mendez, S.; Tamaño Machiavello, MN.; Moratal Pérez, D.; Salmerón Sánchez, M.... (2012). Fibronectin adsorption and cell response on electroactive poly (vinylidene fluoride) films. Biomedical Materials. 7(3):35004-35014. https://doi.org/10.1088/1748-6041/7/3/035004 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/1748-6041/7/3/035004 | es_ES |
dc.description.upvformatpinicio | 35004 | es_ES |
dc.description.upvformatpfin | 35014 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 234720 | |
dc.identifier.eissn | 1748-605X | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Shard, A. G., & Tomlins, P. E. (2006). Biocompatibility and the efficacy of medical implants. Regenerative Medicine, 1(6), 789-800. doi:10.2217/17460751.1.6.789 | es_ES |
dc.description.references | Klee, D., Ademovic, Z., Bosserhoff, A., Hoecker, H., Maziolis, G., & Erli, H.-J. (2003). Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials, 24(21), 3663-3670. doi:10.1016/s0142-9612(03)00235-7 | es_ES |
dc.description.references | Guerra, N. B., González-García, C., Llopis, V., Rodríguez-Hernández, J. C., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Subtle variations in polymer chemistry modulate substrate stiffness and fibronectin activity. Soft Matter, 6(19), 4748. doi:10.1039/c0sm00074d | es_ES |
dc.description.references | Altankov, G., & Groth, T. (1994). Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9-10), 732-737. doi:10.1007/bf00120366 | es_ES |
dc.description.references | Avnur, Z., & Geiger, B. (1981). The removal of extracellular fibronectin from areas of cell-substrate contact. Cell, 25(1), 121-132. doi:10.1016/0092-8674(81)90236-1 | es_ES |
dc.description.references | Altankov, G., Groth, T., Krasteva, N., Albrecht, W., & Paul, D. (1997). Morphological evidence for a different fibronectin receptor organization and function during fibroblast adhesion on hydrophilic and hydrophobic glass substrata. Journal of Biomaterials Science, Polymer Edition, 8(9), 721-740. doi:10.1163/156856297x00524 | es_ES |
dc.description.references | Anselme, K. (2000). Osteoblast adhesion on biomaterials. Biomaterials, 21(7), 667-681. doi:10.1016/s0142-9612(99)00242-2 | es_ES |
dc.description.references | Wilson, C. J., Clegg, R. E., Leavesley, D. I., & Pearcy, M. J. (2005). Mediation of Biomaterial–Cell Interactions by Adsorbed Proteins: A Review. Tissue Engineering, 11(1-2), 1-18. doi:10.1089/ten.2005.11.1 | es_ES |
dc.description.references | Whittle, J. D., Bullett, N. A., Short, R. D., Ian Douglas, C. W., Hollander, A. P., & Davies, J. (2002). Adsorption of vitronectin, collagen and immunoglobulin-G to plasma polymer surfaces by enzyme linked immunosorbent assay (ELISA). Journal of Materials Chemistry, 12(9), 2726-2732. doi:10.1039/b201471h | es_ES |
dc.description.references | Barrias, C. C., Martins, M. C. L., Almeida-Porada, G., Barbosa, M. A., & Granja, P. L. (2009). The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials, 30(3), 307-316. doi:10.1016/j.biomaterials.2008.09.048 | es_ES |
dc.description.references | Okada, S., Ito, H., Nagai, A., Komotori, J., & Imai, H. (2010). Adhesion of osteoblast-like cells on nanostructured hydroxyapatite. Acta Biomaterialia, 6(2), 591-597. doi:10.1016/j.actbio.2009.07.037 | es_ES |
dc.description.references | Weber, N., Lee, Y.-S., Shanmugasundaram, S., Jaffe, M., & Arinzeh, T. L. (2010). Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomaterialia, 6(9), 3550-3556. doi:10.1016/j.actbio.2010.03.035 | es_ES |
dc.description.references | Nalwa, H. S. (1995). Ferroelectric Polymers. doi:10.1201/9781482295450 | es_ES |
dc.description.references | Branciforti, M. C., Sencadas, V., Lanceros-Mendez, S., & Gregorio, R. (2007). New technique of processing highly oriented poly(vinylidene fluoride) films exclusively in the β phase. Journal of Polymer Science Part B: Polymer Physics, 45(19), 2793-2801. doi:10.1002/polb.21239 | es_ES |
dc.description.references | Sencadas, V., Gregorio Filho, R., & Lanceros-Mendez, S. (2006). Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 352(21-22), 2226-2229. doi:10.1016/j.jnoncrysol.2006.02.052 | es_ES |
dc.description.references | Sencadas, V., Gregorio, R., & Lanceros-Méndez, S. (2009). α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science, Part B, 48(3), 514-525. doi:10.1080/00222340902837527 | es_ES |
dc.description.references | Gomes, J., Serrado Nunes, J., Sencadas, V., & Lanceros-Mendez, S. (2010). Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Materials and Structures, 19(6), 065010. doi:10.1088/0964-1726/19/6/065010 | es_ES |
dc.description.references | Serrado Nunes, J., Wu, A., Gomes, J., Sencadas, V., Vilarinho, P. M., & Lanceros-Méndez, S. (2009). Relationship between the microstructure and the microscopic piezoelectric response of the α- and β-phases of poly(vinylidene fluoride). Applied Physics A, 95(3), 875-880. doi:10.1007/s00339-009-5089-2 | es_ES |
dc.description.references | Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/tsmc.1979.4310076 | es_ES |
dc.description.references | Sigal, G. B., Mrksich, M., & Whitesides, G. M. (1998). Effect of Surface Wettability on the Adsorption of Proteins and Detergents. Journal of the American Chemical Society, 120(14), 3464-3473. doi:10.1021/ja970819l | es_ES |
dc.description.references | Van Wachem, P. B., Beugeling, T., Feijen, J., Bantjes, A., Detmers, J. P., & van Aken, W. G. (1985). Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials, 6(6), 403-408. doi:10.1016/0142-9612(85)90101-2 | es_ES |
dc.description.references | Hernández, J. C. R., Salmerón Sánchez, M., Soria, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2007). Substrate Chemistry-Dependent Conformations of Single Laminin Molecules on Polymer Surfaces are Revealed by the Phase Signal of Atomic Force Microscopy. Biophysical Journal, 93(1), 202-207. doi:10.1529/biophysj.106.102491 | es_ES |
dc.description.references | Bar-Cohen, Y. (Ed.). (2004). Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition. doi:10.1117/3.547465 | es_ES |
dc.description.references | Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3 | es_ES |
dc.description.references | Tsapikouni, T. S., & Missirlis, Y. F. (2008). Protein–material interactions: From micro-to-nano scale. Materials Science and Engineering: B, 152(1-3), 2-7. doi:10.1016/j.mseb.2008.06.007 | es_ES |
dc.description.references | Michael, K. E., Vernekar, V. N., Keselowsky, B. G., Meredith, J. C., Latour, R. A., & García, A. J. (2003). Adsorption-Induced Conformational Changes in Fibronectin Due to Interactions with Well-Defined Surface Chemistries. Langmuir, 19(19), 8033-8040. doi:10.1021/la034810a | es_ES |
dc.description.references | Schmidt, D. R., Waldeck, H., & Kao, W. J. (2009). Protein Adsorption to Biomaterials. Biological Interactions on Materials Surfaces, 1-18. doi:10.1007/978-0-387-98161-1_1 | es_ES |
dc.description.references | Comelles, J., Estévez, M., Martínez, E., & Samitier, J. (2010). The role of surface energy of technical polymers in serum protein adsorption and MG-63 cells adhesion. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 44-51. doi:10.1016/j.nano.2009.05.006 | es_ES |
dc.description.references | Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785 | es_ES |
dc.description.references | Llopis-Hernández, V., Rico, P., Ballester-Beltrán, J., Moratal, D., & Salmerón-Sánchez, M. (2011). Role of Surface Chemistry in Protein Remodeling at the Cell-Material Interface. PLoS ONE, 6(5), e19610. doi:10.1371/journal.pone.0019610 | es_ES |
dc.description.references | Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057 | es_ES |
dc.description.references | Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203 | es_ES |