- -

Structural and vibrational study of Bi2Se3 under high pressure

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Structural and vibrational study of Bi2Se3 under high pressure

Show full item record

Vilaplana Cerda, RI.; Santamaría-Pérez, D.; Gomis Hilario, O.; Manjón Herrera, FJ.; González, J.; Segura, A.; Muñoz, A.... (2011). Structural and vibrational study of Bi2Se3 under high pressure. Physical Review B. 84:184110-1-184110-15. https://doi.org/10.1103/PhysRevB.84.184110

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/48118

Files in this item

Item Metadata

Title: Structural and vibrational study of Bi2Se3 under high pressure
Author: Vilaplana Cerda, Rosario Isabel Santamaría-Pérez, D. Gomis Hilario, Oscar Manjón Herrera, Francisco Javier González, J. Segura, A. Muñoz, A. Rodríguez-Hernández, P. Pérez-González, E. Marín-Borrás, V. Muñoz-Sanjose, V. Drasar, C. Kucek, V.
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Issued date:
The structural and vibrational properties of bismuth selenide (Bi 2Se 3) have been studied by means of x-ray diffraction and Raman scattering measurements up to 20 and 30 GPa, respectively. The measurements have been ...[+]
Subjects: Electronic topological transition , Active lattice-vibrations , Single dirac cone , Thermoelectric properties , Phase-transition , Hydrostatic pressure , Bi2Te3 , Sb2Te3 , Insulator , Surface
Copyrigths: Reserva de todos los derechos
Physical Review B. (issn: 1098-0121 ) (eissn: 1550-235X )
DOI: 10.1103/PhysRevB.84.184110
American Physical Society
Publisher version: http://journals.aps.org/prb/pdf/10.1103/PhysRevB.84.184110
Project ID:
info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/
This work was done under financial support from Spanish Ministry of Science and Innovation under Projects No. MAT2007-66129, No. MAT2010-21270-C04-03/04, and No. CSD-2007-00045 and from the Valencian government under Project ...[+]
Type: Artículo


Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7(2), 105-114. doi:10.1038/nmat2090

Rowe, D. (Ed.). (1995). CRC Handbook of Thermoelectrics. doi:10.1201/9781420049718

Venkatasubramanian, R., Siivola, E., Colpitts, T., & O’Quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602. doi:10.1038/35098012 [+]
Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7(2), 105-114. doi:10.1038/nmat2090

Rowe, D. (Ed.). (1995). CRC Handbook of Thermoelectrics. doi:10.1201/9781420049718

Venkatasubramanian, R., Siivola, E., Colpitts, T., & O’Quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602. doi:10.1038/35098012

Nakajima, S. (1963). The crystal structure of Bi2Te3−xSex. Journal of Physics and Chemistry of Solids, 24(3), 479-485. doi:10.1016/0022-3697(63)90207-5

Scheidemantel, T. J., Meng, J. F., & Badding, J. V. (2005). Thermoelectric power and phase transition of polycrystalline As2Te3 under pressure. Journal of Physics and Chemistry of Solids, 66(10), 1744-1747. doi:10.1016/j.jpcs.2005.07.006

Dresselhaus, M. S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S. B., & Koga, T. (1999). Low-dimensional thermoelectric materials. Physics of the Solid State, 41(5), 679-682. doi:10.1134/1.1130849

Hong, S. S., Kundhikanjana, W., Cha, J. J., Lai, K., Kong, D., Meister, S., … Cui, Y. (2010). Ultrathin Topological Insulator Bi2Se3Nanoribbons Exfoliated by Atomic Force Microscopy. Nano Letters, 10(8), 3118-3122. doi:10.1021/nl101884h

Teweldebrhan, D., Goyal, V., Rahman, M., & Balandin, A. A. (2010). Atomically-thin crystalline films and ribbons of bismuth telluride. Applied Physics Letters, 96(5), 053107. doi:10.1063/1.3280078

Teweldebrhan, D., Goyal, V., & Balandin, A. A. (2010). Exfoliation and Characterization of Bismuth Telluride Atomic Quintuples and Quasi-Two-Dimensional Crystals. Nano Letters, 10(4), 1209-1218. doi:10.1021/nl903590b

Steinberg, H., Gardner, D. R., Lee, Y. S., & Jarillo-Herrero, P. (2010). Surface State Transport and Ambipolar Electric Field Effect in Bi2Se3Nanodevices. Nano Letters, 10(12), 5032-5036. doi:10.1021/nl1032183

Shahil, K. M. F., Hossain, M. Z., Teweldebrhan, D., & Balandin, A. A. (2010). Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators. Applied Physics Letters, 96(15), 153103. doi:10.1063/1.3396190

Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6), 438-442. doi:10.1038/nphys1270

Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045-3067. doi:10.1103/revmodphys.82.3045

Moore, J. E. (2010). The birth of topological insulators. Nature, 464(7286), 194-198. doi:10.1038/nature08916

Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., … Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402. doi:10.1038/nphys1274

Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science, 325(5937), 178-181. doi:10.1126/science.1173034

Checkelsky, J. G., Hor, Y. S., Cava, R. J., & Ong, N. P. (2011). Bulk Band Gap and Surface State Conduction Observed in Voltage-Tuned Crystals of the Topological InsulatorBi2Se3. Physical Review Letters, 106(19). doi:10.1103/physrevlett.106.196801

Badding, J. V., Meng, J. F., & Polvani, D. A. (1998). Pressure Tuning in the Search for New and Improved Solid State Materials. Chemistry of Materials, 10(10), 2889-2894. doi:10.1021/cm9802393

Polvani, D. A., Meng, J. F., Chandra Shekar, N. V., Sharp, J., & Badding, J. V. (2001). Large Improvement in Thermoelectric Properties in Pressure-Tuned p-Type Sb1.5Bi0.5Te3. Chemistry of Materials, 13(6), 2068-2071. doi:10.1021/cm000888q

Chandra Shekar, N. V., Polvani, D. A., Meng, J. F., & Badding, J. V. (2005). Improved thermoelectric properties due to electronic topological transition under high pressure. Physica B: Condensed Matter, 358(1-4), 14-18. doi:10.1016/j.physb.2004.12.020

Ovsyannikov, S. V., Shchennikov, V. V., Vorontsov, G. V., Manakov, A. Y., Likhacheva, A. Y., & Kulbachinskii, V. A. (2008). Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. Journal of Applied Physics, 104(5), 053713. doi:10.1063/1.2973201

Ovsyannikov, S. V., & Shchennikov, V. V. (2010). High-Pressure Routes in the Thermoelectricity or How One Can Improve a Performance of Thermoelectrics†. Chemistry of Materials, 22(3), 635-647. doi:10.1021/cm902000x

Li, C., Ruoff, A. L., & Spencer, C. W. (1961). Effect of Pressure on the Energy Gap of Bi2Te3. Journal of Applied Physics, 32(9), 1733-1735. doi:10.1063/1.1728426

Khvostantsev, L. G., Orlov, A. I., Abrikosov, N. K., & Ivanova, L. D. (1980). Thermoelectric properties and phase transition in Sb2Te3 under hydrostatic pressure up to 9 GPa. Physica Status Solidi (a), 58(1), 37-40. doi:10.1002/pssa.2210580103

Sakai, N., Kajiwara, T., Takemura, K., Minomura, S., & Fujii, Y. (1981). Pressure-induced phase transition in Sb2Te3. Solid State Communications, 40(12), 1045-1047. doi:10.1016/0038-1098(81)90248-9

Khvostantsev, L. G., Orlov, A. I., Abrikosov, N. K., & Ivanova, L. D. (1985). Kinetic Properties and Phase Transitions in Sb2Te3 under Hydrostatic Pressure up to 9 GPa. physica status solidi (a), 89(1), 301-309. doi:10.1002/pssa.2210890132

Thonhauser, T., Scheidemantel, T. J., Sofo, J. O., Badding, J. V., & Mahan, G. D. (2003). Thermoelectric properties ofSb2Te3under pressure and uniaxial stress. Physical Review B, 68(8). doi:10.1103/physrevb.68.085201

Thonhauser, T. (2004). Influence of negative pressure on thermoelectric properties of Sb2Te3. Solid State Communications, 129(4), 249-253. doi:10.1016/j.ssc.2003.10.006

Einaga, M., Tanabe, Y., Nakayama, A., Ohmura, A., Ishikawa, F., & Yamada, Y. (2010). New superconducting phase of Bi2Te3under pressure above 11 GPa. Journal of Physics: Conference Series, 215, 012036. doi:10.1088/1742-6596/215/1/012036

Zhang, J. L., Zhang, S. J., Weng, H. M., Zhang, W., Yang, L. X., Liu, Q. Q., … Jin, C. Q. (2010). Pressure-induced superconductivity in topological parent compound Bi2Te3. Proceedings of the National Academy of Sciences, 108(1), 24-28. doi:10.1073/pnas.1014085108

Zhang, C., Sun, L., Chen, Z., Zhou, X., Wu, Q., Yi, W., … Zhao, Z. (2011). Phase diagram of a pressure-induced superconducting state and its relation to the Hall coefficient of Bi2Te3single crystals. Physical Review B, 83(14). doi:10.1103/physrevb.83.140504

Nakayama, A., Einaga, M., Tanabe, Y., Nakano, S., Ishikawa, F., & Yamada, Y. (2009). Structural phase transition in Bi2Te3 under high pressure. High Pressure Research, 29(2), 245-249. doi:10.1080/08957950902951633

Einaga, M., Ohmura, A., Nakayama, A., Ishikawa, F., Yamada, Y., & Nakano, S. (2011). Pressure-induced phase transition of Bi2Te3to a bcc structure. Physical Review B, 83(9). doi:10.1103/physrevb.83.092102

Zhu, L., Wang, H., Wang, Y., Lv, J., Ma, Y., Cui, Q., … Zou, G. (2011). Substitutional Alloy of Bi and Te at High Pressure. Physical Review Letters, 106(14). doi:10.1103/physrevlett.106.145501

Itskevich, E. S., Kashirskaya, L. M., & Kraidenov, V. F. (1997). Anomalies in the low-temperature thermoelectric power of p-Bi2Te3 and Te associated with topological electronic transitions under pressure. Semiconductors, 31(3), 276-278. doi:10.1134/1.1187126

Polian, A., Gauthier, M., Souza, S. M., Trichês, D. M., Cardoso de Lima, J., & Grandi, T. A. (2011). Two-dimensional pressure-induced electronic topological transition in Bi2Te3. Physical Review B, 83(11). doi:10.1103/physrevb.83.113106

Dagens, L. (1978). Phonon anomaly near a Fermi surface topological transition. Journal of Physics F: Metal Physics, 8(10), 2093-2113. doi:10.1088/0305-4608/8/10/010

Dagens, L., & Lopez-Rios, C. (1979). Thermodynamic properties of a metal near a Fermi surface topological transition: the anomalous electron-phonon interaction contribution. Journal of Physics F: Metal Physics, 9(11), 2195-2216. doi:10.1088/0305-4608/9/11/011

Goncharov, A. ., & Struzhkin, V. . (2003). Pressure dependence of the Raman spectrum, lattice parameters and superconducting critical temperature of MgB2: evidence for pressure-driven phonon-assisted electronic topological transition. Physica C: Superconductivity, 385(1-2), 117-130. doi:10.1016/s0921-4534(02)02311-0

Antonangeli, D., Farber, D. L., Said, A. H., Benedetti, L. R., Aracne, C. M., Landa, A., … Klepeis, J. E. (2010). Shear softening in tantalum at megabar pressures. Physical Review B, 82(13). doi:10.1103/physrevb.82.132101

Santamaría-Pérez, D., Vegas, A., Muehle, C., & Jansen, M. (2011). Structural behaviour of alkaline sulfides under compression: High-pressure experimental study on Cs2S. The Journal of Chemical Physics, 135(5), 054511. doi:10.1063/1.3617236

Gomis, O., Vilaplana, R., Manjón, F. J., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., … Drasar, C. (2011). Lattice dynamics of Sb2Te3at high pressures. Physical Review B, 84(17). doi:10.1103/physrevb.84.174305

Vilaplana, R., Gomis, O., Manjón, F. J., Segura, A., Pérez-González, E., Rodríguez-Hernández, P., … Kucek, V. (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B, 84(10). doi:10.1103/physrevb.84.104112

Kullmann, W., Geurts, J., Richter, W., Lehner, N., Rauh, H., Steigenberger, U., … Geick, R. (1984). Effect of Hydrostatic and Uniaxial Pressure on Structural Properties and Raman Active Lattice Vibrations in Bi2Te3. physica status solidi (b), 125(1), 131-138. doi:10.1002/pssb.2221250114

Köhler, H., & Becker, C. R. (1974). Optically Active Lattice Vibrations in Bi2Se3. physica status solidi (b), 61(2), 533-537. doi:10.1002/pssb.2220610218

Richter, W., & Becker, C. R. (1977). A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 <x < 1), (Bi1−ySby)2Te3 (0 <y < 1). Physica Status Solidi (b), 84(2), 619-628. doi:10.1002/pssb.2220840226

Rauh, H., Geick, R., Kohler, H., Nucker, N., & Lehner, N. (1981). Generalized phonon density of states of the layer compounds Bi2Se3, Bi2Te3, Sb2Te3and Bi2(Te0.5Se0.5)3, (Bi0.5Sb0.5)2Te3. Journal of Physics C: Solid State Physics, 14(20), 2705-2712. doi:10.1088/0022-3719/14/20/009

Zhang, J., Peng, Z., Soni, A., Zhao, Y., Xiong, Y., Peng, B., … Xiong, Q. (2011). Raman Spectroscopy of Few-Quintuple Layer Topological Insulator Bi2Se3Nanoplatelets. Nano Letters, 11(6), 2407-2414. doi:10.1021/nl200773n

Zhang, G., Qin, H., Teng, J., Guo, J., Guo, Q., Dai, X., … Wu, K. (2009). Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Applied Physics Letters, 95(5), 053114. doi:10.1063/1.3200237

Zhao, S. Y. F., Beekman, C., Sandilands, L. J., Bashucky, J. E. J., Kwok, D., Lee, N., … Burch, K. S. (2011). Fabrication and characterization of topological insulator Bi2Se3 nanocrystals. Applied Physics Letters, 98(14), 141911. doi:10.1063/1.3573868

Cheng, W., & Ren, S.-F. (2011). Phonons of single quintuple Bi2Te3and Bi2Se3films and bulk materials. Physical Review B, 83(9). doi:10.1103/physrevb.83.094301

Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920

Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-i

Piermarini, G. J., Block, S., & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44(12), 5377-5382. doi:10.1063/1.1662159

Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030

Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864

Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558

Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251

Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953

Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758

Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406

Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863

Blanco, M. A., Francisco, E., & Luaña, V. (2004). GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 158(1), 57-72. doi:10.1016/j.comphy.2003.12.001

Angel, R. J. (2000). Equations of State. Reviews in Mineralogy and Geochemistry, 41(1), 35-59. doi:10.2138/rmg.2000.41.2

Cardona, M. (2004). Phonon widths versus pressure. High Pressure Research, 24(1), 17-23. doi:10.1080/08957950310001635819

Cardona, M. (2004). Effects of pressure on the phonon–phonon and electron–phonon interactions in semiconductors. physica status solidi (b), 241(14), 3128-3137. doi:10.1002/pssb.200405202

Ulrich, C., Mroginski, M. A., Goñi, A. R., Cantarero, A., Schwarz, U., Muñoz, V., & Syassen, K. (1996). Vibrational Properties of InSe under Pressure: Experiment and Theory. physica status solidi (b), 198(1), 121-127. doi:10.1002/pssb.2221980117

Kulibekov, A. M., Olijnyk, H. P., Jephcoat, A. P., Salaeva, Z. Y., Onari, S., & Allakhverdiev, K. R. (2003). Raman scattering under pressure and the phase transition in ɛ-GaSe. physica status solidi (b), 235(2), 517-520. doi:10.1002/pssb.200301613




This item appears in the following Collection(s)

Show full item record