- -

Structural and vibrational study of Bi2Se3 under high pressure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structural and vibrational study of Bi2Se3 under high pressure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vilaplana Cerda, Rosario Isabel es_ES
dc.contributor.author Santamaría-Pérez, D. es_ES
dc.contributor.author Gomis Hilario, Oscar es_ES
dc.contributor.author Manjón Herrera, Francisco Javier es_ES
dc.contributor.author González, J. es_ES
dc.contributor.author Segura, A. es_ES
dc.contributor.author Muñoz, A. es_ES
dc.contributor.author Rodríguez-Hernández, P. es_ES
dc.contributor.author Pérez-González, E. es_ES
dc.contributor.author Marín-Borrás, V. es_ES
dc.contributor.author Muñoz-Sanjose, V. es_ES
dc.contributor.author Drasar, C. es_ES
dc.contributor.author Kucek, V. es_ES
dc.date.accessioned 2015-03-18T10:25:46Z
dc.date.available 2015-03-18T10:25:46Z
dc.date.issued 2011-11-28
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/48118
dc.description.abstract The structural and vibrational properties of bismuth selenide (Bi 2Se 3) have been studied by means of x-ray diffraction and Raman scattering measurements up to 20 and 30 GPa, respectively. The measurements have been complemented with ab initio total-energy and lattice dynamics calculations. Our experimental results evidence a phase transition from the low-pressure rhombohedral (R-3m) phase (¿-Bi 2Se 3) with sixfold coordination for Bi to a monoclinic C2/m structure (ß-Bi 2Se 3) with sevenfold coordination for Bi above 10 GPa. The equation of state and the pressure dependence of the lattice parameters and volume of ¿ and ß phases of Bi 2Se 3 are reported. Furthermore, the presence of a pressure-induced electronic topological phase transition in ¿-Bi 2Se 3 is discussed. Raman measurements evidence that Bi 2Se 3 undergoes two additional phase transitions around 20 and 28 GPa, likely toward a monoclinic C2/c and a disordered body-centered cubic structure with 8-fold and 9- or 10-fold coordination, respectively. These two high-pressure structures are the same as those recently found at high pressures in Bi 2Te 3 and Sb 2Te 3. On pressure release, Bi 2Se 3 reverts to the original rhombohedral phase after considerable hysteresis. Symmetries, frequencies, and pressure coefficients of the Raman and infrared modes in the different phases are reported and discussed. © 2011 American Physical Society. es_ES
dc.description.sponsorship This work was done under financial support from Spanish Ministry of Science and Innovation under Projects No. MAT2007-66129, No. MAT2010-21270-C04-03/04, and No. CSD-2007-00045 and from the Valencian government under Project No. Prometeo/2011-035. It is also supported by the Ministry of Education, Youth and Sports of the Czech Republic Project No. MSM 0021627501. E.P.G. acknowledges the financial support of the Spanish Ministry of Education. Supercomputer time was provided by the Red Espanola de Supercomputacion and the MALTA cluster. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electronic topological transition es_ES
dc.subject Active lattice-vibrations es_ES
dc.subject Single dirac cone es_ES
dc.subject Thermoelectric properties es_ES
dc.subject Phase-transition es_ES
dc.subject Hydrostatic pressure es_ES
dc.subject Bi2Te3 es_ES
dc.subject Sb2Te3 es_ES
dc.subject Insulator es_ES
dc.subject Surface es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Structural and vibrational study of Bi2Se3 under high pressure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.84.184110
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2007-66129/ES/OXIDOS SEMICONDUCTORES II-VI PARA LA OPTOELECTRONICA UV Y LA ESPINTRONICA/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2011%2F035/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MSMT//0021627501/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-03/ES/MATERIALES, NANOMATERIALES Y AGREGRADOS BAJO CONDICIONES EXTREMAS. PROPIEDADES ELECTRONICAS Y DINAMICAS DESDE METODOS AB INITIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-04/ES/CRECIMIENTO Y CARACTERIZACION DE NANOESTRUCTURAS DE OXIDOS METALICOS BAJO ALTAS PRESIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Vilaplana Cerda, RI.; Santamaría-Pérez, D.; Gomis Hilario, O.; Manjón Herrera, FJ.; González, J.; Segura, A.; Muñoz, A.... (2011). Structural and vibrational study of Bi2Se3 under high pressure. Physical Review B. 84:184110-1-184110-15. https://doi.org/10.1103/PhysRevB.84.184110 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://journals.aps.org/prb/pdf/10.1103/PhysRevB.84.184110 es_ES
dc.description.upvformatpinicio 184110-1 es_ES
dc.description.upvformatpfin 184110-15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 84 es_ES
dc.relation.senia 206156
dc.identifier.eissn 1550-235X
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministry of Education, Youth and Sports, República Checa es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.description.references Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7(2), 105-114. doi:10.1038/nmat2090 es_ES
dc.description.references Rowe, D. (Ed.). (1995). CRC Handbook of Thermoelectrics. doi:10.1201/9781420049718 es_ES
dc.description.references Venkatasubramanian, R., Siivola, E., Colpitts, T., & O’Quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602. doi:10.1038/35098012 es_ES
dc.description.references Nakajima, S. (1963). The crystal structure of Bi2Te3−xSex. Journal of Physics and Chemistry of Solids, 24(3), 479-485. doi:10.1016/0022-3697(63)90207-5 es_ES
dc.description.references Scheidemantel, T. J., Meng, J. F., & Badding, J. V. (2005). Thermoelectric power and phase transition of polycrystalline As2Te3 under pressure. Journal of Physics and Chemistry of Solids, 66(10), 1744-1747. doi:10.1016/j.jpcs.2005.07.006 es_ES
dc.description.references Dresselhaus, M. S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S. B., & Koga, T. (1999). Low-dimensional thermoelectric materials. Physics of the Solid State, 41(5), 679-682. doi:10.1134/1.1130849 es_ES
dc.description.references Hong, S. S., Kundhikanjana, W., Cha, J. J., Lai, K., Kong, D., Meister, S., … Cui, Y. (2010). Ultrathin Topological Insulator Bi2Se3Nanoribbons Exfoliated by Atomic Force Microscopy. Nano Letters, 10(8), 3118-3122. doi:10.1021/nl101884h es_ES
dc.description.references Teweldebrhan, D., Goyal, V., Rahman, M., & Balandin, A. A. (2010). Atomically-thin crystalline films and ribbons of bismuth telluride. Applied Physics Letters, 96(5), 053107. doi:10.1063/1.3280078 es_ES
dc.description.references Teweldebrhan, D., Goyal, V., & Balandin, A. A. (2010). Exfoliation and Characterization of Bismuth Telluride Atomic Quintuples and Quasi-Two-Dimensional Crystals. Nano Letters, 10(4), 1209-1218. doi:10.1021/nl903590b es_ES
dc.description.references Steinberg, H., Gardner, D. R., Lee, Y. S., & Jarillo-Herrero, P. (2010). Surface State Transport and Ambipolar Electric Field Effect in Bi2Se3Nanodevices. Nano Letters, 10(12), 5032-5036. doi:10.1021/nl1032183 es_ES
dc.description.references Shahil, K. M. F., Hossain, M. Z., Teweldebrhan, D., & Balandin, A. A. (2010). Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators. Applied Physics Letters, 96(15), 153103. doi:10.1063/1.3396190 es_ES
dc.description.references Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6), 438-442. doi:10.1038/nphys1270 es_ES
dc.description.references Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045-3067. doi:10.1103/revmodphys.82.3045 es_ES
dc.description.references Moore, J. E. (2010). The birth of topological insulators. Nature, 464(7286), 194-198. doi:10.1038/nature08916 es_ES
dc.description.references Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., … Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402. doi:10.1038/nphys1274 es_ES
dc.description.references Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science, 325(5937), 178-181. doi:10.1126/science.1173034 es_ES
dc.description.references Checkelsky, J. G., Hor, Y. S., Cava, R. J., & Ong, N. P. (2011). Bulk Band Gap and Surface State Conduction Observed in Voltage-Tuned Crystals of the Topological InsulatorBi2Se3. Physical Review Letters, 106(19). doi:10.1103/physrevlett.106.196801 es_ES
dc.description.references Badding, J. V., Meng, J. F., & Polvani, D. A. (1998). Pressure Tuning in the Search for New and Improved Solid State Materials. Chemistry of Materials, 10(10), 2889-2894. doi:10.1021/cm9802393 es_ES
dc.description.references Polvani, D. A., Meng, J. F., Chandra Shekar, N. V., Sharp, J., & Badding, J. V. (2001). Large Improvement in Thermoelectric Properties in Pressure-Tuned p-Type Sb1.5Bi0.5Te3. Chemistry of Materials, 13(6), 2068-2071. doi:10.1021/cm000888q es_ES
dc.description.references Chandra Shekar, N. V., Polvani, D. A., Meng, J. F., & Badding, J. V. (2005). Improved thermoelectric properties due to electronic topological transition under high pressure. Physica B: Condensed Matter, 358(1-4), 14-18. doi:10.1016/j.physb.2004.12.020 es_ES
dc.description.references Ovsyannikov, S. V., Shchennikov, V. V., Vorontsov, G. V., Manakov, A. Y., Likhacheva, A. Y., & Kulbachinskii, V. A. (2008). Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. Journal of Applied Physics, 104(5), 053713. doi:10.1063/1.2973201 es_ES
dc.description.references Ovsyannikov, S. V., & Shchennikov, V. V. (2010). High-Pressure Routes in the Thermoelectricity or How One Can Improve a Performance of Thermoelectrics†. Chemistry of Materials, 22(3), 635-647. doi:10.1021/cm902000x es_ES
dc.description.references Li, C., Ruoff, A. L., & Spencer, C. W. (1961). Effect of Pressure on the Energy Gap of Bi2Te3. Journal of Applied Physics, 32(9), 1733-1735. doi:10.1063/1.1728426 es_ES
dc.description.references Khvostantsev, L. G., Orlov, A. I., Abrikosov, N. K., & Ivanova, L. D. (1980). Thermoelectric properties and phase transition in Sb2Te3 under hydrostatic pressure up to 9 GPa. Physica Status Solidi (a), 58(1), 37-40. doi:10.1002/pssa.2210580103 es_ES
dc.description.references Sakai, N., Kajiwara, T., Takemura, K., Minomura, S., & Fujii, Y. (1981). Pressure-induced phase transition in Sb2Te3. Solid State Communications, 40(12), 1045-1047. doi:10.1016/0038-1098(81)90248-9 es_ES
dc.description.references Khvostantsev, L. G., Orlov, A. I., Abrikosov, N. K., & Ivanova, L. D. (1985). Kinetic Properties and Phase Transitions in Sb2Te3 under Hydrostatic Pressure up to 9 GPa. physica status solidi (a), 89(1), 301-309. doi:10.1002/pssa.2210890132 es_ES
dc.description.references Thonhauser, T., Scheidemantel, T. J., Sofo, J. O., Badding, J. V., & Mahan, G. D. (2003). Thermoelectric properties ofSb2Te3under pressure and uniaxial stress. Physical Review B, 68(8). doi:10.1103/physrevb.68.085201 es_ES
dc.description.references Thonhauser, T. (2004). Influence of negative pressure on thermoelectric properties of Sb2Te3. Solid State Communications, 129(4), 249-253. doi:10.1016/j.ssc.2003.10.006 es_ES
dc.description.references Einaga, M., Tanabe, Y., Nakayama, A., Ohmura, A., Ishikawa, F., & Yamada, Y. (2010). New superconducting phase of Bi2Te3under pressure above 11 GPa. Journal of Physics: Conference Series, 215, 012036. doi:10.1088/1742-6596/215/1/012036 es_ES
dc.description.references Zhang, J. L., Zhang, S. J., Weng, H. M., Zhang, W., Yang, L. X., Liu, Q. Q., … Jin, C. Q. (2010). Pressure-induced superconductivity in topological parent compound Bi2Te3. Proceedings of the National Academy of Sciences, 108(1), 24-28. doi:10.1073/pnas.1014085108 es_ES
dc.description.references Zhang, C., Sun, L., Chen, Z., Zhou, X., Wu, Q., Yi, W., … Zhao, Z. (2011). Phase diagram of a pressure-induced superconducting state and its relation to the Hall coefficient of Bi2Te3single crystals. Physical Review B, 83(14). doi:10.1103/physrevb.83.140504 es_ES
dc.description.references Nakayama, A., Einaga, M., Tanabe, Y., Nakano, S., Ishikawa, F., & Yamada, Y. (2009). Structural phase transition in Bi2Te3 under high pressure. High Pressure Research, 29(2), 245-249. doi:10.1080/08957950902951633 es_ES
dc.description.references Einaga, M., Ohmura, A., Nakayama, A., Ishikawa, F., Yamada, Y., & Nakano, S. (2011). Pressure-induced phase transition of Bi2Te3to a bcc structure. Physical Review B, 83(9). doi:10.1103/physrevb.83.092102 es_ES
dc.description.references Zhu, L., Wang, H., Wang, Y., Lv, J., Ma, Y., Cui, Q., … Zou, G. (2011). Substitutional Alloy of Bi and Te at High Pressure. Physical Review Letters, 106(14). doi:10.1103/physrevlett.106.145501 es_ES
dc.description.references Itskevich, E. S., Kashirskaya, L. M., & Kraidenov, V. F. (1997). Anomalies in the low-temperature thermoelectric power of p-Bi2Te3 and Te associated with topological electronic transitions under pressure. Semiconductors, 31(3), 276-278. doi:10.1134/1.1187126 es_ES
dc.description.references Polian, A., Gauthier, M., Souza, S. M., Trichês, D. M., Cardoso de Lima, J., & Grandi, T. A. (2011). Two-dimensional pressure-induced electronic topological transition in Bi2Te3. Physical Review B, 83(11). doi:10.1103/physrevb.83.113106 es_ES
dc.description.references Dagens, L. (1978). Phonon anomaly near a Fermi surface topological transition. Journal of Physics F: Metal Physics, 8(10), 2093-2113. doi:10.1088/0305-4608/8/10/010 es_ES
dc.description.references Dagens, L., & Lopez-Rios, C. (1979). Thermodynamic properties of a metal near a Fermi surface topological transition: the anomalous electron-phonon interaction contribution. Journal of Physics F: Metal Physics, 9(11), 2195-2216. doi:10.1088/0305-4608/9/11/011 es_ES
dc.description.references Goncharov, A. ., & Struzhkin, V. . (2003). Pressure dependence of the Raman spectrum, lattice parameters and superconducting critical temperature of MgB2: evidence for pressure-driven phonon-assisted electronic topological transition. Physica C: Superconductivity, 385(1-2), 117-130. doi:10.1016/s0921-4534(02)02311-0 es_ES
dc.description.references Antonangeli, D., Farber, D. L., Said, A. H., Benedetti, L. R., Aracne, C. M., Landa, A., … Klepeis, J. E. (2010). Shear softening in tantalum at megabar pressures. Physical Review B, 82(13). doi:10.1103/physrevb.82.132101 es_ES
dc.description.references Santamaría-Pérez, D., Vegas, A., Muehle, C., & Jansen, M. (2011). Structural behaviour of alkaline sulfides under compression: High-pressure experimental study on Cs2S. The Journal of Chemical Physics, 135(5), 054511. doi:10.1063/1.3617236 es_ES
dc.description.references Gomis, O., Vilaplana, R., Manjón, F. J., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., … Drasar, C. (2011). Lattice dynamics of Sb2Te3at high pressures. Physical Review B, 84(17). doi:10.1103/physrevb.84.174305 es_ES
dc.description.references Vilaplana, R., Gomis, O., Manjón, F. J., Segura, A., Pérez-González, E., Rodríguez-Hernández, P., … Kucek, V. (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B, 84(10). doi:10.1103/physrevb.84.104112 es_ES
dc.description.references Kullmann, W., Geurts, J., Richter, W., Lehner, N., Rauh, H., Steigenberger, U., … Geick, R. (1984). Effect of Hydrostatic and Uniaxial Pressure on Structural Properties and Raman Active Lattice Vibrations in Bi2Te3. physica status solidi (b), 125(1), 131-138. doi:10.1002/pssb.2221250114 es_ES
dc.description.references Köhler, H., & Becker, C. R. (1974). Optically Active Lattice Vibrations in Bi2Se3. physica status solidi (b), 61(2), 533-537. doi:10.1002/pssb.2220610218 es_ES
dc.description.references Richter, W., & Becker, C. R. (1977). A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 <x < 1), (Bi1−ySby)2Te3 (0 <y < 1). Physica Status Solidi (b), 84(2), 619-628. doi:10.1002/pssb.2220840226 es_ES
dc.description.references Rauh, H., Geick, R., Kohler, H., Nucker, N., & Lehner, N. (1981). Generalized phonon density of states of the layer compounds Bi2Se3, Bi2Te3, Sb2Te3and Bi2(Te0.5Se0.5)3, (Bi0.5Sb0.5)2Te3. Journal of Physics C: Solid State Physics, 14(20), 2705-2712. doi:10.1088/0022-3719/14/20/009 es_ES
dc.description.references Zhang, J., Peng, Z., Soni, A., Zhao, Y., Xiong, Y., Peng, B., … Xiong, Q. (2011). Raman Spectroscopy of Few-Quintuple Layer Topological Insulator Bi2Se3Nanoplatelets. Nano Letters, 11(6), 2407-2414. doi:10.1021/nl200773n es_ES
dc.description.references Zhang, G., Qin, H., Teng, J., Guo, J., Guo, Q., Dai, X., … Wu, K. (2009). Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Applied Physics Letters, 95(5), 053114. doi:10.1063/1.3200237 es_ES
dc.description.references Zhao, S. Y. F., Beekman, C., Sandilands, L. J., Bashucky, J. E. J., Kwok, D., Lee, N., … Burch, K. S. (2011). Fabrication and characterization of topological insulator Bi2Se3 nanocrystals. Applied Physics Letters, 98(14), 141911. doi:10.1063/1.3573868 es_ES
dc.description.references Cheng, W., & Ren, S.-F. (2011). Phonons of single quintuple Bi2Te3and Bi2Se3films and bulk materials. Physical Review B, 83(9). doi:10.1103/physrevb.83.094301 es_ES
dc.description.references Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920 es_ES
dc.description.references Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-i es_ES
dc.description.references Piermarini, G. J., Block, S., & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44(12), 5377-5382. doi:10.1063/1.1662159 es_ES
dc.description.references Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030 es_ES
dc.description.references Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640 es_ES
dc.description.references Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864 es_ES
dc.description.references Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558 es_ES
dc.description.references Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 es_ES
dc.description.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES
dc.description.references Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 es_ES
dc.description.references Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 es_ES
dc.description.references Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863 es_ES
dc.description.references Blanco, M. A., Francisco, E., & Luaña, V. (2004). GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 158(1), 57-72. doi:10.1016/j.comphy.2003.12.001 es_ES
dc.description.references Angel, R. J. (2000). Equations of State. Reviews in Mineralogy and Geochemistry, 41(1), 35-59. doi:10.2138/rmg.2000.41.2 es_ES
dc.description.references Cardona, M. (2004). Phonon widths versus pressure. High Pressure Research, 24(1), 17-23. doi:10.1080/08957950310001635819 es_ES
dc.description.references Cardona, M. (2004). Effects of pressure on the phonon–phonon and electron–phonon interactions in semiconductors. physica status solidi (b), 241(14), 3128-3137. doi:10.1002/pssb.200405202 es_ES
dc.description.references Ulrich, C., Mroginski, M. A., Goñi, A. R., Cantarero, A., Schwarz, U., Muñoz, V., & Syassen, K. (1996). Vibrational Properties of InSe under Pressure: Experiment and Theory. physica status solidi (b), 198(1), 121-127. doi:10.1002/pssb.2221980117 es_ES
dc.description.references Kulibekov, A. M., Olijnyk, H. P., Jephcoat, A. P., Salaeva, Z. Y., Onari, S., & Allakhverdiev, K. R. (2003). Raman scattering under pressure and the phase transition in ɛ-GaSe. physica status solidi (b), 235(2), 517-520. doi:10.1002/pssb.200301613 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem