Mostrar el registro sencillo del ítem
dc.contributor.author | Vilaplana Cerda, Rosario Isabel | es_ES |
dc.contributor.author | Gomis Hilario, Oscar | es_ES |
dc.contributor.author | Manjón Herrera, Francisco Javier | es_ES |
dc.contributor.author | Segura, A. | es_ES |
dc.contributor.author | Pérez-González, E. | es_ES |
dc.contributor.author | Rodríguez-Hernández, P. | es_ES |
dc.contributor.author | Muñoz, A. | es_ES |
dc.contributor.author | González, J. | es_ES |
dc.contributor.author | Marín-Borrás, V. | es_ES |
dc.contributor.author | Muñoz-Sanjosé, V. | es_ES |
dc.contributor.author | Drasar, C. | es_ES |
dc.contributor.author | Kucek, V. | es_ES |
dc.date.accessioned | 2015-03-18T10:33:15Z | |
dc.date.available | 2015-03-18T10:33:15Z | |
dc.date.issued | 2011-09-09 | |
dc.identifier.issn | 1098-0121 | |
dc.identifier.uri | http://hdl.handle.net/10251/48119 | |
dc.description.abstract | We report an experimental and theoretical lattice dynamics study of bismuth telluride (Bi2Te3) up to 23 GPa together with an experimental and theoretical study of the optical absorption and reflection up to 10 GPa. The indirect bandgap of the low-pressure rhombohedral (R-3m) phase (alpha-Bi2Te3) was observed to decrease with pressure at a rate of -6meV/GPa. In regard to lattice dynamics, Raman-active modes of a-Bi2Te3 were observed up to 7.4 GPa. The pressure dependence of their frequency and width provides evidence of the presence of an electronic-topological transition around 4.0 GPa. Above 7.4 GPa a phase transition is detected to the C2/m structure. On further increasing pressure two additional phase transitions, attributed to the C2/c and disordered bcc (Im-3m) phases, have been observed near 15.5 and 21.6 GPa in good agreement with the structures recently observed by means of x-ray diffraction at high pressures in Bi2Te3. After release of pressure the sample reverts back to the original rhombohedral phase after considerable hysteresis. Raman-and IR-mode symmetries, frequencies, and pressure coefficients in the different phases are reported and discussed. | es_ES |
dc.description.sponsorship | This work has been done under financial support from Spanish MICINN under projects MAT2008-06873-C02-02, MAT2007-66129, Prometeo/2011-035, MAT2010-21270-C04-03/04, and CSD2007-00045 and supported by the Ministry of Education, Youth and Sports of the Czech Republic (MSM 0021627501). E P-G acknowledges the financial support of the Spanish MEC under a FPI fellowship. Super-computer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation.ispartof | Physical Review B | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Electronic topological transition | es_ES |
dc.subject | Initio molecular-dynamics | es_ES |
dc.subject | Total-Energy calculations | es_ES |
dc.subject | Augmented-wave method | es_ES |
dc.subject | Single dirac cone | es_ES |
dc.subject | Thermoelectric properties | es_ES |
dc.subject | Phase-transition | es_ES |
dc.subject | Bismuth telluride | es_ES |
dc.subject | Hydrostatic pressure | es_ES |
dc.subject | Basis-set | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | High-pressure vibrational and optical study of Bi2Te3 | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1103/PhysRevB.84.104112 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MAT2007-66129/ES/OXIDOS SEMICONDUCTORES II-VI PARA LA OPTOELECTRONICA UV Y LA ESPINTRONICA/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MSMT//0021627501/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2008-06873-C02-02/ES/SEMICONDUCTORES MAGNETICOS DE GAP ANCHO (ZNM)O (M:CO,MN,FE) Y SUS FASES DE ALTA PRESION. DEPOSICION E CAPA DELGADA Y PROPIEDADES ESTRUCTURALES Y MAGNETO-OPTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-03/ES/MATERIALES, NANOMATERIALES Y AGREGRADOS BAJO CONDICIONES EXTREMAS. PROPIEDADES ELECTRONICAS Y DINAMICAS DESDE METODOS AB INITIO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada | es_ES |
dc.description.bibliographicCitation | Vilaplana Cerda, RI.; Gomis Hilario, O.; Manjón Herrera, FJ.; Segura, A.; Pérez-González, E.; Rodríguez-Hernández, P.; Muñoz, A.... (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B. 84:104112-1-104112-13. https://doi.org/10.1103/PhysRevB.84.104112 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://journals.aps.org/prb/pdf/10.1103/PhysRevB.84.104112 | es_ES |
dc.description.upvformatpinicio | 104112-1 | es_ES |
dc.description.upvformatpfin | 104112-13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 84 | es_ES |
dc.relation.senia | 196337 | |
dc.identifier.eissn | 1550-235X | |
dc.contributor.funder | Ministry of Education, Youth and Sports, República Checa | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7(2), 105-114. doi:10.1038/nmat2090 | es_ES |
dc.description.references | Rowe, D. (Ed.). (1995). CRC Handbook of Thermoelectrics. doi:10.1201/9781420049718 | es_ES |
dc.description.references | Venkatasubramanian, R., Siivola, E., Colpitts, T., & O’Quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602. doi:10.1038/35098012 | es_ES |
dc.description.references | Dresselhaus, M. S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S. B., & Koga, T. (1999). Low-dimensional thermoelectric materials. Physics of the Solid State, 41(5), 679-682. doi:10.1134/1.1130849 | es_ES |
dc.description.references | Teweldebrhan, D., Goyal, V., Rahman, M., & Balandin, A. A. (2010). Atomically-thin crystalline films and ribbons of bismuth telluride. Applied Physics Letters, 96(5), 053107. doi:10.1063/1.3280078 | es_ES |
dc.description.references | Adam, A. (2007). Rietveld refinement of the semiconducting system Bi2−xFexTe3 from X-ray powder diffraction. Materials Research Bulletin, 42(12), 1986-1994. doi:10.1016/j.materresbull.2007.02.027 | es_ES |
dc.description.references | Scheidemantel, T. J., Meng, J. F., & Badding, J. V. (2005). Thermoelectric power and phase transition of polycrystalline As2Te3 under pressure. Journal of Physics and Chemistry of Solids, 66(10), 1744-1747. doi:10.1016/j.jpcs.2005.07.006 | es_ES |
dc.description.references | Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6), 438-442. doi:10.1038/nphys1270 | es_ES |
dc.description.references | Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045-3067. doi:10.1103/revmodphys.82.3045 | es_ES |
dc.description.references | Moore, J. E. (2010). The birth of topological insulators. Nature, 464(7286), 194-198. doi:10.1038/nature08916 | es_ES |
dc.description.references | Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., … Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402. doi:10.1038/nphys1274 | es_ES |
dc.description.references | Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science, 325(5937), 178-181. doi:10.1126/science.1173034 | es_ES |
dc.description.references | Badding, J. V., Meng, J. F., & Polvani, D. A. (1998). Pressure Tuning in the Search for New and Improved Solid State Materials. Chemistry of Materials, 10(10), 2889-2894. doi:10.1021/cm9802393 | es_ES |
dc.description.references | Polvani, D. A., Meng, J. F., Chandra Shekar, N. V., Sharp, J., & Badding, J. V. (2001). Large Improvement in Thermoelectric Properties in Pressure-Tuned p-Type Sb1.5Bi0.5Te3. Chemistry of Materials, 13(6), 2068-2071. doi:10.1021/cm000888q | es_ES |
dc.description.references | Chandra Shekar, N. V., Polvani, D. A., Meng, J. F., & Badding, J. V. (2005). Improved thermoelectric properties due to electronic topological transition under high pressure. Physica B: Condensed Matter, 358(1-4), 14-18. doi:10.1016/j.physb.2004.12.020 | es_ES |
dc.description.references | Ovsyannikov, S. V., Shchennikov, V. V., Vorontsov, G. V., Manakov, A. Y., Likhacheva, A. Y., & Kulbachinskii, V. A. (2008). Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. Journal of Applied Physics, 104(5), 053713. doi:10.1063/1.2973201 | es_ES |
dc.description.references | Ovsyannikov, S. V., & Shchennikov, V. V. (2010). High-Pressure Routes in the Thermoelectricity or How One Can Improve a Performance of Thermoelectrics†. Chemistry of Materials, 22(3), 635-647. doi:10.1021/cm902000x | es_ES |
dc.description.references | Li, C., Ruoff, A. L., & Spencer, C. W. (1961). Effect of Pressure on the Energy Gap of Bi2Te3. Journal of Applied Physics, 32(9), 1733-1735. doi:10.1063/1.1728426 | es_ES |
dc.description.references | Khvostantsev, L. G., Orlov, A. I., Abrikosov, N. K., & Ivanova, L. D. (1980). Thermoelectric properties and phase transition in Sb2Te3 under hydrostatic pressure up to 9 GPa. Physica Status Solidi (a), 58(1), 37-40. doi:10.1002/pssa.2210580103 | es_ES |
dc.description.references | Sakai, N., Kajiwara, T., Takemura, K., Minomura, S., & Fujii, Y. (1981). Pressure-induced phase transition in Sb2Te3. Solid State Communications, 40(12), 1045-1047. doi:10.1016/0038-1098(81)90248-9 | es_ES |
dc.description.references | Khvostantsev, L. G., Orlov, A. I., Abrikosov, N. K., & Ivanova, L. D. (1985). Kinetic Properties and Phase Transitions in Sb2Te3 under Hydrostatic Pressure up to 9 GPa. physica status solidi (a), 89(1), 301-309. doi:10.1002/pssa.2210890132 | es_ES |
dc.description.references | Thonhauser, T., Scheidemantel, T. J., Sofo, J. O., Badding, J. V., & Mahan, G. D. (2003). Thermoelectric properties ofSb2Te3under pressure and uniaxial stress. Physical Review B, 68(8). doi:10.1103/physrevb.68.085201 | es_ES |
dc.description.references | Thonhauser, T. (2004). Influence of negative pressure on thermoelectric properties of Sb2Te3. Solid State Communications, 129(4), 249-253. doi:10.1016/j.ssc.2003.10.006 | es_ES |
dc.description.references | Einaga, M., Tanabe, Y., Nakayama, A., Ohmura, A., Ishikawa, F., & Yamada, Y. (2010). New superconducting phase of Bi2Te3under pressure above 11 GPa. Journal of Physics: Conference Series, 215, 012036. doi:10.1088/1742-6596/215/1/012036 | es_ES |
dc.description.references | Zhang, J. L., Zhang, S. J., Weng, H. M., Zhang, W., Yang, L. X., Liu, Q. Q., … Jin, C. Q. (2010). Pressure-induced superconductivity in topological parent compound Bi2Te3. Proceedings of the National Academy of Sciences, 108(1), 24-28. doi:10.1073/pnas.1014085108 | es_ES |
dc.description.references | Zhang, C., Sun, L., Chen, Z., Zhou, X., Wu, Q., Yi, W., … Zhao, Z. (2011). Phase diagram of a pressure-induced superconducting state and its relation to the Hall coefficient of Bi2Te3single crystals. Physical Review B, 83(14). doi:10.1103/physrevb.83.140504 | es_ES |
dc.description.references | Jacobsen, M. K., Kumar, R. S., Cornelius, A. L., Sinogeiken, S. V., Nico, M. F., Elert, M., … Nguyen, J. (2008). HIGH PRESSURE X-RAY DIFFRACTION STUDIES OF Bi[sub 2−x]Sb[sub x]Te[sub 3] (x = 0,1,2). doi:10.1063/1.2833001 | es_ES |
dc.description.references | Nakayama, A., Einaga, M., Tanabe, Y., Nakano, S., Ishikawa, F., & Yamada, Y. (2009). Structural phase transition in Bi2Te3 under high pressure. High Pressure Research, 29(2), 245-249. doi:10.1080/08957950902951633 | es_ES |
dc.description.references | Einaga, M., Ohmura, A., Nakayama, A., Ishikawa, F., Yamada, Y., & Nakano, S. (2011). Pressure-induced phase transition of Bi2Te3to a bcc structure. Physical Review B, 83(9). doi:10.1103/physrevb.83.092102 | es_ES |
dc.description.references | Zhu, L., Wang, H., Wang, Y., Lv, J., Ma, Y., Cui, Q., … Zou, G. (2011). Substitutional Alloy of Bi and Te at High Pressure. Physical Review Letters, 106(14). doi:10.1103/physrevlett.106.145501 | es_ES |
dc.description.references | Itskevich, E. S., Kashirskaya, L. M., & Kraidenov, V. F. (1997). Anomalies in the low-temperature thermoelectric power of p-Bi2Te3 and Te associated with topological electronic transitions under pressure. Semiconductors, 31(3), 276-278. doi:10.1134/1.1187126 | es_ES |
dc.description.references | Polian, A., Gauthier, M., Souza, S. M., Trichês, D. M., Cardoso de Lima, J., & Grandi, T. A. (2011). Two-dimensional pressure-induced electronic topological transition in Bi2Te3. Physical Review B, 83(11). doi:10.1103/physrevb.83.113106 | es_ES |
dc.description.references | Dagens, L. (1978). Phonon anomaly near a Fermi surface topological transition. Journal of Physics F: Metal Physics, 8(10), 2093-2113. doi:10.1088/0305-4608/8/10/010 | es_ES |
dc.description.references | Dagens, L., & Lopez-Rios, C. (1979). Thermodynamic properties of a metal near a Fermi surface topological transition: the anomalous electron-phonon interaction contribution. Journal of Physics F: Metal Physics, 9(11), 2195-2216. doi:10.1088/0305-4608/9/11/011 | es_ES |
dc.description.references | Goncharov, A. ., & Struzhkin, V. . (2003). Pressure dependence of the Raman spectrum, lattice parameters and superconducting critical temperature of MgB2: evidence for pressure-driven phonon-assisted electronic topological transition. Physica C: Superconductivity, 385(1-2), 117-130. doi:10.1016/s0921-4534(02)02311-0 | es_ES |
dc.description.references | Antonangeli, D., Farber, D. L., Said, A. H., Benedetti, L. R., Aracne, C. M., Landa, A., … Klepeis, J. E. (2010). Shear softening in tantalum at megabar pressures. Physical Review B, 82(13). doi:10.1103/physrevb.82.132101 | es_ES |
dc.description.references | Richter, W., & Becker, C. R. (1977). A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 <x < 1), (Bi1−ySby)2Te3 (0 <y < 1). Physica Status Solidi (b), 84(2), 619-628. doi:10.1002/pssb.2220840226 | es_ES |
dc.description.references | Rauh, H., Geick, R., Kohler, H., Nucker, N., & Lehner, N. (1981). Generalized phonon density of states of the layer compounds Bi2Se3, Bi2Te3, Sb2Te3and Bi2(Te0.5Se0.5)3, (Bi0.5Sb0.5)2Te3. Journal of Physics C: Solid State Physics, 14(20), 2705-2712. doi:10.1088/0022-3719/14/20/009 | es_ES |
dc.description.references | Kullmann, W., Eichhorn, G., Rauh, H., Geick, R., Eckold, G., & Steigenberger, U. (1990). Lattice Dynamics and Phonon Dispersion in the Narrow Gap Semiconductor Bi2Te3 with Sandwich Structure. physica status solidi (b), 162(1), 125-140. doi:10.1002/pssb.2221620109 | es_ES |
dc.description.references | Shahil, K. M. F., Hossain, M. Z., Teweldebrhan, D., & Balandin, A. A. (2010). Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators. Applied Physics Letters, 96(15), 153103. doi:10.1063/1.3396190 | es_ES |
dc.description.references | Jenkins, J. O., Rayne, J. A., & Ure, R. W. (1972). Elastic Moduli and Phonon Properties ofBi2Te3. Physical Review B, 5(8), 3171-3184. doi:10.1103/physrevb.5.3171 | es_ES |
dc.description.references | Huang, B.-L., & Kaviany, M. (2008). Ab initioand molecular dynamics predictions for electron and phonon transport in bismuth telluride. Physical Review B, 77(12). doi:10.1103/physrevb.77.125209 | es_ES |
dc.description.references | Qiu, B., & Ruan, X. (2009). Molecular dynamics simulations of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials. Physical Review B, 80(16). doi:10.1103/physrevb.80.165203 | es_ES |
dc.description.references | Cheng, W., & Ren, S.-F. (2011). Phonons of single quintuple Bi2Te3and Bi2Se3films and bulk materials. Physical Review B, 83(9). doi:10.1103/physrevb.83.094301 | es_ES |
dc.description.references | Kullmann, W., Geurts, J., Richter, W., Lehner, N., Rauh, H., Steigenberger, U., … Geick, R. (1984). Effect of Hydrostatic and Uniaxial Pressure on Structural Properties and Raman Active Lattice Vibrations in Bi2Te3. physica status solidi (b), 125(1), 131-138. doi:10.1002/pssb.2221250114 | es_ES |
dc.description.references | Bludská, J., Jakubec, I., Drašar, Č., Lošťák, P., & Horák, J. (2007). Structural defects in Cu-doped Bi2Te3single crystals. Philosophical Magazine, 87(2), 325-335. doi:10.1080/14786430600990337 | es_ES |
dc.description.references | Piermarini, G. J., Block, S., & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44(12), 5377-5382. doi:10.1063/1.1662159 | es_ES |
dc.description.references | Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030 | es_ES |
dc.description.references | Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640 | es_ES |
dc.description.references | Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558 | es_ES |
dc.description.references | Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251 | es_ES |
dc.description.references | Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0 | es_ES |
dc.description.references | Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 | es_ES |
dc.description.references | Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 | es_ES |
dc.description.references | Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 | es_ES |
dc.description.references | Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 | es_ES |
dc.description.references | Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863 | es_ES |
dc.description.references | Blanco, M. A., Francisco, E., & Luaña, V. (2004). GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 158(1), 57-72. doi:10.1016/j.comphy.2003.12.001 | es_ES |
dc.description.references | Black, J., Conwell, E. M., Seigle, L., & Spencer, C. W. (1957). Electrical and optical properties of some M2v−bN3vi−b semiconductors. Journal of Physics and Chemistry of Solids, 2(3), 240-251. doi:10.1016/0022-3697(57)90090-2 | es_ES |
dc.description.references | Austin, I. G. (1958). The Optical Properties of Bismuth Telluride. Proceedings of the Physical Society, 72(4), 545-552. doi:10.1088/0370-1328/72/4/309 | es_ES |
dc.description.references | Greenaway, D. L., & Harbeke, G. (1965). Band structure of bismuth telluride, bismuth selenide and their respective alloys. Journal of Physics and Chemistry of Solids, 26(10), 1585-1604. doi:10.1016/0022-3697(65)90092-2 | es_ES |
dc.description.references | Kim, M., Freeman, A. J., & Geller, C. B. (2005). Screened exchange LDA determination of the ground and excited state properties of thermoelectrics:Bi2Te3. Physical Review B, 72(3). doi:10.1103/physrevb.72.035205 | es_ES |
dc.description.references | Köhler, H. (1976). Non-ParabolicE(k) Relation of the Lowest Conduction Band in Bi2 Te3. physica status solidi (b), 73(1), 95-104. doi:10.1002/pssb.2220730107 | es_ES |
dc.description.references | Russo, V., Bailini, A., Zamboni, M., Passoni, M., Conti, C., Casari, C. S., … Bottani, C. E. (2008). Raman spectroscopy of Bi-Te thin films. Journal of Raman Spectroscopy, 39(2), 205-210. doi:10.1002/jrs.1874 | es_ES |
dc.description.references | Goncalves, L. M., Couto, C., Alpuim, P., Rolo, A. G., Völklein, F., & Correia, J. H. (2010). Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films, 518(10), 2816-2821. doi:10.1016/j.tsf.2009.08.038 | es_ES |
dc.description.references | Liang, Y., Wang, W., Zeng, B., Zhang, G., Huang, J., Li, J., … Zhang, X. (2011). Raman scattering investigation of Bi2Te3 hexagonal nanoplates prepared by a solvothermal process in the absence of NaOH. Journal of Alloys and Compounds, 509(16), 5147-5151. doi:10.1016/j.jallcom.2011.02.015 | es_ES |
dc.description.references | Ulrich, C., Mroginski, M. A., Goñi, A. R., Cantarero, A., Schwarz, U., Muñoz, V., & Syassen, K. (1996). Vibrational Properties of InSe under Pressure: Experiment and Theory. physica status solidi (b), 198(1), 121-127. doi:10.1002/pssb.2221980117 | es_ES |
dc.description.references | Kulibekov, A. M., Olijnyk, H. P., Jephcoat, A. P., Salaeva, Z. Y., Onari, S., & Allakhverdiev, K. R. (2003). Raman scattering under pressure and the phase transition in ɛ-GaSe. physica status solidi (b), 235(2), 517-520. doi:10.1002/pssb.200301613 | es_ES |