- -

High-pressure vibrational and optical study of Bi2Te3

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High-pressure vibrational and optical study of Bi2Te3

Mostrar el registro completo del ítem

Vilaplana Cerda, RI.; Gomis Hilario, O.; Manjón Herrera, FJ.; Segura, A.; Pérez-González, E.; Rodríguez-Hernández, P.; Muñoz, A.... (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B. 84:104112-1-104112-13. https://doi.org/10.1103/PhysRevB.84.104112

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/48119

Ficheros en el ítem

Metadatos del ítem

Título: High-pressure vibrational and optical study of Bi2Te3
Autor: Vilaplana Cerda, Rosario Isabel Gomis Hilario, Oscar Manjón Herrera, Francisco Javier Segura, A. Pérez-González, E. Rodríguez-Hernández, P. Muñoz, A. González, J. Marín-Borrás, V. Muñoz-Sanjosé, V. Drasar, C. Kucek, V.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Fecha difusión:
Resumen:
We report an experimental and theoretical lattice dynamics study of bismuth telluride (Bi2Te3) up to 23 GPa together with an experimental and theoretical study of the optical absorption and reflection up to 10 GPa. The ...[+]
Palabras clave: Electronic topological transition , Initio molecular-dynamics , Total-Energy calculations , Augmented-wave method , Single dirac cone , Thermoelectric properties , Phase-transition , Bismuth telluride , Hydrostatic pressure , Basis-set
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Review B. (issn: 1098-0121 ) (eissn: 1550-235X )
DOI: 10.1103/PhysRevB.84.104112
Editorial:
American Physical Society
Versión del editor: http://journals.aps.org/prb/pdf/10.1103/PhysRevB.84.104112
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//MAT2007-66129/ES/OXIDOS SEMICONDUCTORES II-VI PARA LA OPTOELECTRONICA UV Y LA ESPINTRONICA/ /
info:eu-repo/grantAgreement/MSMT//0021627501/
info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/
info:eu-repo/grantAgreement/MICINN//MAT2008-06873-C02-02/ES/SEMICONDUCTORES MAGNETICOS DE GAP ANCHO (ZNM)O (M:CO,MN,FE) Y SUS FASES DE ALTA PRESION. DEPOSICION E CAPA DELGADA Y PROPIEDADES ESTRUCTURALES Y MAGNETO-OPTICAS/
info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-03/ES/MATERIALES, NANOMATERIALES Y AGREGRADOS BAJO CONDICIONES EXTREMAS. PROPIEDADES ELECTRONICAS Y DINAMICAS DESDE METODOS AB INITIO/
Agradecimientos:
This work has been done under financial support from Spanish MICINN under projects MAT2008-06873-C02-02, MAT2007-66129, Prometeo/2011-035, MAT2010-21270-C04-03/04, and CSD2007-00045 and supported by the Ministry of Education, ...[+]
Tipo: Artículo

References

Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7(2), 105-114. doi:10.1038/nmat2090

Rowe, D. (Ed.). (1995). CRC Handbook of Thermoelectrics. doi:10.1201/9781420049718

Venkatasubramanian, R., Siivola, E., Colpitts, T., & O’Quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602. doi:10.1038/35098012 [+]
Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7(2), 105-114. doi:10.1038/nmat2090

Rowe, D. (Ed.). (1995). CRC Handbook of Thermoelectrics. doi:10.1201/9781420049718

Venkatasubramanian, R., Siivola, E., Colpitts, T., & O’Quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602. doi:10.1038/35098012

Dresselhaus, M. S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S. B., & Koga, T. (1999). Low-dimensional thermoelectric materials. Physics of the Solid State, 41(5), 679-682. doi:10.1134/1.1130849

Teweldebrhan, D., Goyal, V., Rahman, M., & Balandin, A. A. (2010). Atomically-thin crystalline films and ribbons of bismuth telluride. Applied Physics Letters, 96(5), 053107. doi:10.1063/1.3280078

Adam, A. (2007). Rietveld refinement of the semiconducting system Bi2−xFexTe3 from X-ray powder diffraction. Materials Research Bulletin, 42(12), 1986-1994. doi:10.1016/j.materresbull.2007.02.027

Scheidemantel, T. J., Meng, J. F., & Badding, J. V. (2005). Thermoelectric power and phase transition of polycrystalline As2Te3 under pressure. Journal of Physics and Chemistry of Solids, 66(10), 1744-1747. doi:10.1016/j.jpcs.2005.07.006

Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6), 438-442. doi:10.1038/nphys1270

Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045-3067. doi:10.1103/revmodphys.82.3045

Moore, J. E. (2010). The birth of topological insulators. Nature, 464(7286), 194-198. doi:10.1038/nature08916

Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., … Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402. doi:10.1038/nphys1274

Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science, 325(5937), 178-181. doi:10.1126/science.1173034

Badding, J. V., Meng, J. F., & Polvani, D. A. (1998). Pressure Tuning in the Search for New and Improved Solid State Materials. Chemistry of Materials, 10(10), 2889-2894. doi:10.1021/cm9802393

Polvani, D. A., Meng, J. F., Chandra Shekar, N. V., Sharp, J., & Badding, J. V. (2001). Large Improvement in Thermoelectric Properties in Pressure-Tuned p-Type Sb1.5Bi0.5Te3. Chemistry of Materials, 13(6), 2068-2071. doi:10.1021/cm000888q

Chandra Shekar, N. V., Polvani, D. A., Meng, J. F., & Badding, J. V. (2005). Improved thermoelectric properties due to electronic topological transition under high pressure. Physica B: Condensed Matter, 358(1-4), 14-18. doi:10.1016/j.physb.2004.12.020

Ovsyannikov, S. V., Shchennikov, V. V., Vorontsov, G. V., Manakov, A. Y., Likhacheva, A. Y., & Kulbachinskii, V. A. (2008). Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. Journal of Applied Physics, 104(5), 053713. doi:10.1063/1.2973201

Ovsyannikov, S. V., & Shchennikov, V. V. (2010). High-Pressure Routes in the Thermoelectricity or How One Can Improve a Performance of Thermoelectrics†. Chemistry of Materials, 22(3), 635-647. doi:10.1021/cm902000x

Li, C., Ruoff, A. L., & Spencer, C. W. (1961). Effect of Pressure on the Energy Gap of Bi2Te3. Journal of Applied Physics, 32(9), 1733-1735. doi:10.1063/1.1728426

Khvostantsev, L. G., Orlov, A. I., Abrikosov, N. K., & Ivanova, L. D. (1980). Thermoelectric properties and phase transition in Sb2Te3 under hydrostatic pressure up to 9 GPa. Physica Status Solidi (a), 58(1), 37-40. doi:10.1002/pssa.2210580103

Sakai, N., Kajiwara, T., Takemura, K., Minomura, S., & Fujii, Y. (1981). Pressure-induced phase transition in Sb2Te3. Solid State Communications, 40(12), 1045-1047. doi:10.1016/0038-1098(81)90248-9

Khvostantsev, L. G., Orlov, A. I., Abrikosov, N. K., & Ivanova, L. D. (1985). Kinetic Properties and Phase Transitions in Sb2Te3 under Hydrostatic Pressure up to 9 GPa. physica status solidi (a), 89(1), 301-309. doi:10.1002/pssa.2210890132

Thonhauser, T., Scheidemantel, T. J., Sofo, J. O., Badding, J. V., & Mahan, G. D. (2003). Thermoelectric properties ofSb2Te3under pressure and uniaxial stress. Physical Review B, 68(8). doi:10.1103/physrevb.68.085201

Thonhauser, T. (2004). Influence of negative pressure on thermoelectric properties of Sb2Te3. Solid State Communications, 129(4), 249-253. doi:10.1016/j.ssc.2003.10.006

Einaga, M., Tanabe, Y., Nakayama, A., Ohmura, A., Ishikawa, F., & Yamada, Y. (2010). New superconducting phase of Bi2Te3under pressure above 11 GPa. Journal of Physics: Conference Series, 215, 012036. doi:10.1088/1742-6596/215/1/012036

Zhang, J. L., Zhang, S. J., Weng, H. M., Zhang, W., Yang, L. X., Liu, Q. Q., … Jin, C. Q. (2010). Pressure-induced superconductivity in topological parent compound Bi2Te3. Proceedings of the National Academy of Sciences, 108(1), 24-28. doi:10.1073/pnas.1014085108

Zhang, C., Sun, L., Chen, Z., Zhou, X., Wu, Q., Yi, W., … Zhao, Z. (2011). Phase diagram of a pressure-induced superconducting state and its relation to the Hall coefficient of Bi2Te3single crystals. Physical Review B, 83(14). doi:10.1103/physrevb.83.140504

Jacobsen, M. K., Kumar, R. S., Cornelius, A. L., Sinogeiken, S. V., Nico, M. F., Elert, M., … Nguyen, J. (2008). HIGH PRESSURE X-RAY DIFFRACTION STUDIES OF Bi[sub 2−x]Sb[sub x]Te[sub 3] (x = 0,1,2). doi:10.1063/1.2833001

Nakayama, A., Einaga, M., Tanabe, Y., Nakano, S., Ishikawa, F., & Yamada, Y. (2009). Structural phase transition in Bi2Te3 under high pressure. High Pressure Research, 29(2), 245-249. doi:10.1080/08957950902951633

Einaga, M., Ohmura, A., Nakayama, A., Ishikawa, F., Yamada, Y., & Nakano, S. (2011). Pressure-induced phase transition of Bi2Te3to a bcc structure. Physical Review B, 83(9). doi:10.1103/physrevb.83.092102

Zhu, L., Wang, H., Wang, Y., Lv, J., Ma, Y., Cui, Q., … Zou, G. (2011). Substitutional Alloy of Bi and Te at High Pressure. Physical Review Letters, 106(14). doi:10.1103/physrevlett.106.145501

Itskevich, E. S., Kashirskaya, L. M., & Kraidenov, V. F. (1997). Anomalies in the low-temperature thermoelectric power of p-Bi2Te3 and Te associated with topological electronic transitions under pressure. Semiconductors, 31(3), 276-278. doi:10.1134/1.1187126

Polian, A., Gauthier, M., Souza, S. M., Trichês, D. M., Cardoso de Lima, J., & Grandi, T. A. (2011). Two-dimensional pressure-induced electronic topological transition in Bi2Te3. Physical Review B, 83(11). doi:10.1103/physrevb.83.113106

Dagens, L. (1978). Phonon anomaly near a Fermi surface topological transition. Journal of Physics F: Metal Physics, 8(10), 2093-2113. doi:10.1088/0305-4608/8/10/010

Dagens, L., & Lopez-Rios, C. (1979). Thermodynamic properties of a metal near a Fermi surface topological transition: the anomalous electron-phonon interaction contribution. Journal of Physics F: Metal Physics, 9(11), 2195-2216. doi:10.1088/0305-4608/9/11/011

Goncharov, A. ., & Struzhkin, V. . (2003). Pressure dependence of the Raman spectrum, lattice parameters and superconducting critical temperature of MgB2: evidence for pressure-driven phonon-assisted electronic topological transition. Physica C: Superconductivity, 385(1-2), 117-130. doi:10.1016/s0921-4534(02)02311-0

Antonangeli, D., Farber, D. L., Said, A. H., Benedetti, L. R., Aracne, C. M., Landa, A., … Klepeis, J. E. (2010). Shear softening in tantalum at megabar pressures. Physical Review B, 82(13). doi:10.1103/physrevb.82.132101

Richter, W., & Becker, C. R. (1977). A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 <x < 1), (Bi1−ySby)2Te3 (0 <y < 1). Physica Status Solidi (b), 84(2), 619-628. doi:10.1002/pssb.2220840226

Rauh, H., Geick, R., Kohler, H., Nucker, N., & Lehner, N. (1981). Generalized phonon density of states of the layer compounds Bi2Se3, Bi2Te3, Sb2Te3and Bi2(Te0.5Se0.5)3, (Bi0.5Sb0.5)2Te3. Journal of Physics C: Solid State Physics, 14(20), 2705-2712. doi:10.1088/0022-3719/14/20/009

Kullmann, W., Eichhorn, G., Rauh, H., Geick, R., Eckold, G., & Steigenberger, U. (1990). Lattice Dynamics and Phonon Dispersion in the Narrow Gap Semiconductor Bi2Te3 with Sandwich Structure. physica status solidi (b), 162(1), 125-140. doi:10.1002/pssb.2221620109

Shahil, K. M. F., Hossain, M. Z., Teweldebrhan, D., & Balandin, A. A. (2010). Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators. Applied Physics Letters, 96(15), 153103. doi:10.1063/1.3396190

Jenkins, J. O., Rayne, J. A., & Ure, R. W. (1972). Elastic Moduli and Phonon Properties ofBi2Te3. Physical Review B, 5(8), 3171-3184. doi:10.1103/physrevb.5.3171

Huang, B.-L., & Kaviany, M. (2008). Ab initioand molecular dynamics predictions for electron and phonon transport in bismuth telluride. Physical Review B, 77(12). doi:10.1103/physrevb.77.125209

Qiu, B., & Ruan, X. (2009). Molecular dynamics simulations of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials. Physical Review B, 80(16). doi:10.1103/physrevb.80.165203

Cheng, W., & Ren, S.-F. (2011). Phonons of single quintuple Bi2Te3and Bi2Se3films and bulk materials. Physical Review B, 83(9). doi:10.1103/physrevb.83.094301

Kullmann, W., Geurts, J., Richter, W., Lehner, N., Rauh, H., Steigenberger, U., … Geick, R. (1984). Effect of Hydrostatic and Uniaxial Pressure on Structural Properties and Raman Active Lattice Vibrations in Bi2Te3. physica status solidi (b), 125(1), 131-138. doi:10.1002/pssb.2221250114

Bludská, J., Jakubec, I., Drašar, Č., Lošťák, P., & Horák, J. (2007). Structural defects in Cu-doped Bi2Te3single crystals. Philosophical Magazine, 87(2), 325-335. doi:10.1080/14786430600990337

Piermarini, G. J., Block, S., & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44(12), 5377-5382. doi:10.1063/1.1662159

Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030

Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640

Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558

Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251

Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953

Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758

Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406

Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863

Blanco, M. A., Francisco, E., & Luaña, V. (2004). GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 158(1), 57-72. doi:10.1016/j.comphy.2003.12.001

Black, J., Conwell, E. M., Seigle, L., & Spencer, C. W. (1957). Electrical and optical properties of some M2v−bN3vi−b semiconductors. Journal of Physics and Chemistry of Solids, 2(3), 240-251. doi:10.1016/0022-3697(57)90090-2

Austin, I. G. (1958). The Optical Properties of Bismuth Telluride. Proceedings of the Physical Society, 72(4), 545-552. doi:10.1088/0370-1328/72/4/309

Greenaway, D. L., & Harbeke, G. (1965). Band structure of bismuth telluride, bismuth selenide and their respective alloys. Journal of Physics and Chemistry of Solids, 26(10), 1585-1604. doi:10.1016/0022-3697(65)90092-2

Kim, M., Freeman, A. J., & Geller, C. B. (2005). Screened exchange LDA determination of the ground and excited state properties of thermoelectrics:Bi2Te3. Physical Review B, 72(3). doi:10.1103/physrevb.72.035205

Köhler, H. (1976). Non-ParabolicE(k) Relation of the Lowest Conduction Band in Bi2 Te3. physica status solidi (b), 73(1), 95-104. doi:10.1002/pssb.2220730107

Russo, V., Bailini, A., Zamboni, M., Passoni, M., Conti, C., Casari, C. S., … Bottani, C. E. (2008). Raman spectroscopy of Bi-Te thin films. Journal of Raman Spectroscopy, 39(2), 205-210. doi:10.1002/jrs.1874

Goncalves, L. M., Couto, C., Alpuim, P., Rolo, A. G., Völklein, F., & Correia, J. H. (2010). Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films, 518(10), 2816-2821. doi:10.1016/j.tsf.2009.08.038

Liang, Y., Wang, W., Zeng, B., Zhang, G., Huang, J., Li, J., … Zhang, X. (2011). Raman scattering investigation of Bi2Te3 hexagonal nanoplates prepared by a solvothermal process in the absence of NaOH. Journal of Alloys and Compounds, 509(16), 5147-5151. doi:10.1016/j.jallcom.2011.02.015

Ulrich, C., Mroginski, M. A., Goñi, A. R., Cantarero, A., Schwarz, U., Muñoz, V., & Syassen, K. (1996). Vibrational Properties of InSe under Pressure: Experiment and Theory. physica status solidi (b), 198(1), 121-127. doi:10.1002/pssb.2221980117

Kulibekov, A. M., Olijnyk, H. P., Jephcoat, A. P., Salaeva, Z. Y., Onari, S., & Allakhverdiev, K. R. (2003). Raman scattering under pressure and the phase transition in ɛ-GaSe. physica status solidi (b), 235(2), 517-520. doi:10.1002/pssb.200301613

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem