- -

One-dimensional migration of olfactory ensheathing cells on synthetic materials: Experimental and numerical characterization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One-dimensional migration of olfactory ensheathing cells on synthetic materials: Experimental and numerical characterization

Mostrar el registro completo del ítem

Perez Garnes, M.; Martínez Ramos, C.; Barcia, JA.; Escobar Ivirico, JL.; Gomez Pinedo, UA.; Vallés Lluch, A.; Monleón Pradas, M. (2013). One-dimensional migration of olfactory ensheathing cells on synthetic materials: Experimental and numerical characterization. Cell Biochemistry and Biophysics. 65:21-36. https://doi.org/10.1007/s12013-012-9399-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/48191

Ficheros en el ítem

Metadatos del ítem

Título: One-dimensional migration of olfactory ensheathing cells on synthetic materials: Experimental and numerical characterization
Autor: Perez Garnes, Manuel Martínez Ramos, Cristina Barcia, Juan A. Escobar Ivirico, Jorge Luis Gomez Pinedo, Ulises Alfonso Vallés Lluch, Ana Monleón Pradas, Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
Olfactory ensheathing cells (OECs) are of great interest for regenerative purposes since they are believed to aid axonal growth. With the view set on the strategies to achieve reconnection between neuronal structures, it ...[+]
Palabras clave: Olfactory ensheathing cells , Polycaprolactone scaffolds , Migration , Diffusion , Colonization
Derechos de uso: Reserva de todos los derechos
Fuente:
Cell Biochemistry and Biophysics. (issn: 1085-9195 ) (eissn: 1559-0283 )
DOI: 10.1007/s12013-012-9399-1
Editorial:
Humana Press
Versión del editor: http://dx.doi.org/10.1007/s12013-012-9399-1
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2008-06434/ES/MATERIALES PARA REGENERACION NEURAL Y ANGIOGENESIS EN EL SISTEMA NERVIOSO CENTRAL/
Agradecimientos:
Support of the Spanish Science & Innovation Ministery through project MAT2008-06434 is acknowledged. MMP and CMR acknowledge partial funding through the "Convenio de Colaboracion para la Investigacion Basica y Traslacional ...[+]
Tipo: Artículo

References

Stokols, S., Sakamoto, J., Breckon, C., Holt, T., Weiss, J., & Tuszynski, M. H. (2006). Templated agarose scaffolds support linear axonal regeneration. Tissue Engineering, 12(10), 2777–2787.

Wei, Y. T., Tian, W. M., Yu, X., Cui, F. Z., Hou, S. P., Xu, Q. Y., et al. (2007). Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain. Biomedical Materials, 2(3), 142–146.

Yao, L., Wang, S., Cui, W., Sherlock, R., O’Connell, C., Damodaran, G., et al. (2009). Effect of functionalized micropatterned PLGA on guided neurite growth. Acta Biomaterialia, 5(2), 580–588. [+]
Stokols, S., Sakamoto, J., Breckon, C., Holt, T., Weiss, J., & Tuszynski, M. H. (2006). Templated agarose scaffolds support linear axonal regeneration. Tissue Engineering, 12(10), 2777–2787.

Wei, Y. T., Tian, W. M., Yu, X., Cui, F. Z., Hou, S. P., Xu, Q. Y., et al. (2007). Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain. Biomedical Materials, 2(3), 142–146.

Yao, L., Wang, S., Cui, W., Sherlock, R., O’Connell, C., Damodaran, G., et al. (2009). Effect of functionalized micropatterned PLGA on guided neurite growth. Acta Biomaterialia, 5(2), 580–588.

Chehrehasa, F., Windus, L. C. E., Ekberg, J. A. K., Scott, S. E., Amaya, D., Mackay-Sim, A., et al. (2010). Olfactory glia enhance neonatal axon regeneration. Molecular and Cellular Neuroscience, 45(3), 277–288.

Chen, B. K., Knight, A. M., de Ruiter, G. C., Spinner, R. J., Yaszemski, M. J., Currier, B. L., et al. (2009). Axon regeneration through scaffold into distal spinal cord after transection. Journal of Neurotrauma, 26(10), 1759–1771.

Goto, E., Mukozawa, M., Mori, H., & Hara, M. (2010). A rolled sheet of collagen gel with cultured Schwann cells: Model of nerve conduit to enhance neurite growth. Journal of Bioscience and Bioengineering, 109(5), 512–518.

Lietz, M., Dreesmann, L., Hoss, M., Oberhoffner, S., & Schlosshauer, B. (2006). Neuro tissue engineering of glial nerve guides and the impact of different cell types. Biomaterials, 27(8), 1425–1436.

Radtke, C., Sasaki, M., Lankford, K. L., Vogt, P. M., & Kocsis, J. D. (2008). Potential of olfactory ensheathing cells for cell-based therapy in spinal cord injury. Journal of Rehabilitation Research and Development, 45(1), 141–151.

Wei, Y., Miao, X., Xian, M., Zhang, C., Liu, X., Zhao, H., et al. (2008). Effects of transplanting olfactory ensheathing cells on recovery of olfactory epithelium after olfactory nerve transection in rats. Medical Science Monitor, 14(10), 198–204.

Tennent, R., & Chuah, M. I. (1996). Ultrastructural study of ensheathing cells in early development of olfactory axons. Brain Research, Developmental Brain Research, 95(1), 135–139.

Doucette, R. (1990). Glial influences on axonal growth in the primary olfactory system. Glia, 3(6), 433–449.

Field, P., Li, Y., & Raisman, G. (2003). Ensheathment of the olfactory nerves in the adult rat. Journal of Neurocytology, 32(3), 317–324.

Boyd, J. G., Doucette, R., & Kawaja, M. D. (2005). Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. Faseb Journal, 19(7), 694–703.

Franklin, R. J., Gilson, J. M., Franceschini, I. A., & Barnett, S. C. (1996). Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia, 17(3), 217–224.

Imaizumi, T., Lankford, K. L., Waxman, S. G., Greer, C. A., & Kocsis, J. D. (1998). Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. Journal of Neuroscience, 18(16), 6176–6185.

Raisman, G. (2001). Olfactory ensheathing cells - another miracle cure for spinal cord injury? Nature Reviews Neuroscience, 2(5), 369–375.

Ramón-Cueto, A., Cordero, M. I., Santos-Benito, F. F., & Avila, J. (2000). Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron, 25(2), 425–435.

Chuah, M. I., Choi-Lundberg, D., Weston, S., Vincent, A. J., Chung, R. S., Vickers, J. C., et al. (2004). Olfactory ensheathing cells promote collateral axonal branching in the injured adult rat spinal cord. Experimental Neurology, 185(1), 15–25.

Bellamkonda, R. V. (2006). Peripheral nerve regeneration: An opinion on channels, scaffolds and anisotropy. Biomaterials, 27(19), 3515–3518.

Liu, Y., Gong, Z., Liu, L., & Sun, H. (2010). Combined effect of olfactory ensheathing cell transplantation and glial cell line-derived neurotrophic factor (GDNF) intravitreal injection on optic nerve injury in rats. Molecular Vision, 16, 2903–2910.

Zhu, Y., Cao, L., Su, Z., Mu, L., Yuan, Y., Gao, L., et al. (2010). Olfactory ensheathing cells: Attractant of neural progenitor migration to olfactory bulb. Glia, 58(6), 716–729.

Basiri, M., & Doucette, R. (2010). Sensorimotor cortex aspiration: A model for studying Wallerian degeneration-induced glial reactivity along the entire length of a single CNS axonal pathway. Brain Research Bulletin, 81(1), 43–52.

Li, Y., Carlstedt, T., Berthold, C.-H., & Raisman, G. (2004). Interaction of transplanted olfactory-ensheathing cells and host astrocytic processes provides a bridge for axons to regenerate across the dorsal root entry zone. Experimental Neurology, 188(2), 300–308.

Li, Y., Yamamoto, M., Raisman, G., Choi, D., & Carlstedt, T. (2007). An experimental model of ventral root repair showing the beneficial effect of transplanting olfactory ensheathing cells. Neurosurgery, 60(4), 734–741.

Ramón-Cueto, A., Plant, G. W., Avila, J., & Bunge, M. B. (1998). Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. The Journal of Neuroscience, 18(10), 3803–3815.

Gómez-Pinedo, U., Vidueira, S., Sancho, F. J., García-Verdugo, J. M., Matías-Guiu, J., & Barcia, J. A. (2011). Olfactory ensheathing glia enhances reentry of axons into the brain from peripheral nerve grafts bridging the substantia nigra with the striatum. Neuroscience Letters, 494(2), 104–108.

Graziadei, P. P., Levine, R. R., & Graziadei, G. A. (1978). Regeneration of olfactory axons and synapse formation in the forebrain after bulbectomy in neonatal mice. Proceedings of the National academy of Sciences of the United States of America, 75(10), 5230–5234.

Cao, L., Liu, L., Chen, Z. Y., Wang, L. M., Ye, J. L., Qiu, H. Y., et al. (2004). Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair. Brain, 127(3), 535–549.

Cao, L., Su, Z., Zhou, Q., Lv, B., Liu, X., Jiao, L., et al. (2006). Glial cell line-derived neurotrophic factor promotes olfactory ensheathing cells migration. Glia, 54(6), 536–544.

Woodhall, E., West, A. K., & Chuah, M. I. (2001). Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Research. Molecular Brain Research, 88(1–2), 203–213.

Cao, L., Zhu, Y. L., Su, Z., Lv, B., Huang, Z., Mu, L., et al. (2007). Olfactory ensheathing cells promote migration of Schwann cells by secreted nerve growth factor. Glia, 55(9), 897–904.

Doucette, R. (1996). Immunohistochemical localization of laminin, fibronectin and collagen type IV in the nerve fiber layer of the olfactory bulb. International Journal of Developmental Neuroscience, 14(7–8), 945–959.

Franceschini, I. A., & Barnett, S. C. (1996). Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Developmental Biology, 173(1), 327–343.

Runyan, S. A., & Phelps, P. E. (2009). Mouse olfactory ensheathing glia enhance axon outgrowth on a myelin substrate in vitro. Experimental Neurology, 216(1), 95–104.

Shen, Y., Qian, Y., Zhang, H., Zuo, B., Lu, Z., Fan, Z., et al. (2010). Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds. Cell Transplantation, 19(2), 147–157.

Li, B.-C., Jiao, S.-S., Xu, C., You, H., & Chen, J.-M. (2010). PLGA conduit seeded with olfactory ensheathing cells for bridging sciatic nerve defect of rats. Journal of Biomedical Materials Research, Part A, 94(3), 769–780.

Clements, I. P., Kim, Y. T., English, A. W., Lu, X., Chung, A., & Bellamkonda, R. V. (2009). Thin-film enhanced nerve guidance channels for peripheral nerve repair. Biomaterials, 30(23–24), 3834–3846.

Martín-López, E., Nieto-Díaz, M., & Nieto-Sampedro, M. (2012). Differential adhesiveness and neurite-promoting activity for neural cells of chitosan, gelatin, and poly-l-lysine films. Journal of Biomaterials Applications, 26(7), 791–809.

Cai, J., Peng, X., Nelson, K. D., Eberhart, R., & Smith, G. M. (2005). Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation. Journal of Biomedical Material Research Part A, 75(2), 374–386.

Novikova, L. N., Mosahebi, A., Wiberg, M., Terenghi, G., Kellerth, J. O., & Novikov, L. N. (2006). Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. Journal of Biomedical Materials Research, Part A, 77(2), 242–252.

Tang, Z. P., Liu, N., Li, Z. W., Xie, X. W., Chen, Y., Shi, Y. H., et al. (2010). In vitro evaluation of the compatibility of a novel collagen-heparan sulfate biological scaffold with olfactory ensheathing cells. Chinese Medical Journal (English), 123(10), 1299–1304.

Wang, B., Zhao, Y., Lin, H., Chen, B., Zhang, J., Zhang, J., et al. (2006). Phenotypical analysis of adult rat olfactory ensheathing cells on 3-D collagen scaffolds. Neuroscience Letters, 401(1–2), 65–70.

Guarnieri, D., De Capua, A., Ventre, M., Borzacchiello, A., Pedone, C., Marasco, D., et al. (2010). Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomaterialia, 6(7), 2532–2539.

Ngo, T. T., Waggoner, P. J., Romero, A. A., Nelson, K. D., Eberhart, R. C., & Smith, G. M. (2003). Poly(l-lactide) microfilaments enhance peripheral nerve regeneration across extended nerve lesions. Journal of Neuroscience Research, 72(2), 227–238.

Schnell, E., Klinkhammer, K., Balzer, S., Brook, G., Klee, D., Dalton, P., et al. (2007). Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-e-caprolactone and a collagen/poly-e-caprolactone blend. Biomaterials, 28(19), 3012–3025.

Lim, S. H., Liu, X. Y., Song, H., Yarema, K. J., & Mao, H. Q. (2010). The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials, 31(34), 9031–9039.

Wong, D. Y., Hollister, S. J., Krebsbach, P. H., & Nosrat, C. (2007). Poly(epsilon-caprolactone) and poly (l-lactic-co-glycolic acid) degradable polymer sponges attenuate astrocyte response and lesion growth in acute traumatic brain injury. Tissue Engineering, 13(10), 2515–2523.

Wong, D. Y., Krebsbach, P. H., & Hollister, S. J. (2008). Brain cortex regeneration affected by scaffold architectures. Journal of Neurosurgery, 109(4), 715–722.

Wong, D. Y., Leveque, J. C., Brumblay, H., Krebsbach, P. H., Hollister, S. J., & Lamarca, F. (2008). Macro-architectures in spinal cord scaffold implants influence regeneration. Journal of Neurotrauma, 25(8), 1027–1037.

Pierucci, A., de Duek, E. A., & de Oliveira, A. L. (2008). Peripheral nerve regeneration through biodegradable conduits prepared using solvent evaporation. Tissue Engineering Part A, 14(5), 595–606.

Vleggeert-Lankamp, C. L., de Ruiter, G. C., Wolfs, J. F., Pego, A. P., van den Berg, R. J., Feirabend, H. K., et al. (2007). Pores in synthetic nerve conduits are beneficial to regeneration. Journal of Biomedical Material Research Part A, 80(4), 965–982.

Cai, A. Q., Landman, K. A., & Hughes, B. D. (2007). Multi-scale modeling of a wound-healing cell migration assay. Journal of Theoretical Biology, 245(3), 576–594.

Maini, P. K., McElwain, D. L., & Leavesley, D. I. (2004). Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Engineering, 10(3–4), 475–482.

Dokukina, I. V., & Gracheva, M. E. (2010). A model of fibroblast motility on substrates with different rigidities. Biophysical Journal, 98(12), 2794–2803.

Schneider, I. C., & Haugh, J. M. (2004). Spatial analysis of 3′ phosphoinositide signaling in living fibroblasts: II. Parameter estimates for individual cells from experiments. Biophysical Journal, 86(1), 599–608.

Marcy, Y., Prost, J., Carlier, M.-F., & Sykes, C. C. (2004). Forces generated during actin-based propulsion: A direct measurement by micromanipulation. Proceedings of the National academy of Sciences of the United States of America, 101(16), 5992–5997.

Mogilner, A., & Oster, G. (2003). Polymer motors: Pushing out the front and pulling up the back. Current Biology, 13(18), R721–R733.

Cheng, G., Youssef, B. B., Markenscoff, P., & Zygourakis, K. (2006). Cell population dynamics modulate the rates of tissue growth processes. Biophysical Journal, 90(3), 713–724.

Galbusera, F., Cioffi, M., Raimondi, M. T., & Pietrabissa, R. (2007). Computational modeling of combined cell population dynamics and oxygen transport in engineered tissue subject to interstitial perfusion. Computer Methods Biomechanics and Biomedical Engineering, 10(4), 279–287.

Hatzikirou, H., & Deutsch, A. (2008). Cellular automata as microscopic models of cell migration in heterogeneous environments. Current Topics in Developmental Biology, 81, 401–434.

Reffay, M., Petitjean, L., Coscoy, S., Grasland-Mongrain, E., Amblard, F., Buguin, A., et al. (2011). Orientation and polarity in collectively migrating cell structures: Statics and dynamics. Biophysical Journal, 100(11), 2566–2575.

Chung, C. A., Yang, C. W., & Chen, C. W. (2006). Analysis of cell growth and diffusion in a scaffold for cartilage tissue engineering. Biotechnology and Bioengineering, 94(6), 1138–1146.

Dunn, J. C., Chan, W. Y., Cristini, V., Kim, J. S., Lowengrub, J., Singh, S., et al. (2006). Analysis of cell growth in three-dimensional scaffolds. Tissue Engineering, 12(4), 705–716.

Harms, B. D., Bassi, G. M., Horwitz, A. R., & Lauffenburger, D. A. (2005). Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophysical Journal, 88(2), 1479–1488.

Lemon, G., & King, J. (2007). Travelling-wave behaviour in a multiphase model of a population of cells in an artificial scaffold. Journal of Mathematical Biology, 55(4), 449–480.

Fisher, R. (1937). The wave of advance of advantageous genes. Annals of Eugenics, 7, 355–369.

Graner, F.o., & Glazier, J. A. (1992). Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical Review Letters, 69(13), 2013–2016.

Ouaknin, G. Y., & Bar-Yoseph, P. Z. (2009). Stochastic collective movement of cells and fingering morphology: No maverick cells. Biophysical Journal, 97(7), 1811–1821.

Savill, N. J., & Hogeweg, P. (1997). Modelling morphogenesis: From single cells to crawling slugs. Journal of Theoretical Biology, 184(3), 229–235.

Brockes, J. P., Fields, K. L., & Raff, M. C. (1979). Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Research, 165, 105–118.

Selinummi, J., Seppala, J., Yli-Harja, O., & Puhakka, J. A. (2005). Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques, 39(6), 859–863.

Gupta, D., Venugopal, J., Prabhakaran, M. P., Dev, V. R., Low, S., Choon, A. T., et al. (2009). Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomaterialia, 5(7), 2560–2569.

Nisbet, D. R., Yu, L. M., Zahir, T., Forsythe, J. S., & Shoichet, M. S. (2008). Characterization of neural stem cells on electrospun poly(epsilon-caprolactone) submicron scaffolds: Evaluating their potential in neural tissue engineering. Journal of Biomaterials Science, Polymer Edition, 19(5), 623–634.

Huang, Z. H., Wang, Y., Cao, L., Su, Z. D., Zhu, Y. L., Chen, Y. Z., et al. (2008). Migratory properties of cultured olfactory ensheathing cells by single-cell migration assay. Cell Research, 18, 479–490.

Ekberg, J. A. K., Amaya, D., Mackay-Sim, A., & St. John, J. A. (2012). The migratory of olfactory ensheathing cells during development and regeneration. Neurosignals. doi: 10.1159/000330895 .

Ruitenberg, M. J., Vukovic, J., Sarich, J., Busfield, S. J., & Plant, G..W. (2006). Olfactory ensheathing cells: characteristics, genetic engineering, and therapeutic potential. Journal of Neurotrauma, 23, 468–478.

Chaikin, P. M., & Lubensky, T. C. (1995). Principles of condensed matter physics (p. 371). Cambridge, UK: Cambridge University Press.

Simpson, M. J., Landman, K. A., & Hughes, B. D. (2010). Cell invasion with proliferation mechanisms motivated by time-lapse data. Physica A, 389, 3779–3790.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem