- -

One-dimensional migration of olfactory ensheathing cells on synthetic materials: Experimental and numerical characterization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One-dimensional migration of olfactory ensheathing cells on synthetic materials: Experimental and numerical characterization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Perez Garnes, Manuel es_ES
dc.contributor.author Martínez Ramos, Cristina es_ES
dc.contributor.author Barcia, Juan A. es_ES
dc.contributor.author Escobar Ivirico, Jorge Luis es_ES
dc.contributor.author Gomez Pinedo, Ulises Alfonso es_ES
dc.contributor.author Vallés Lluch, Ana es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.date.accessioned 2015-03-23T11:43:37Z
dc.date.available 2015-03-23T11:43:37Z
dc.date.issued 2013-07-24
dc.identifier.issn 1085-9195
dc.identifier.uri http://hdl.handle.net/10251/48191
dc.description.abstract Olfactory ensheathing cells (OECs) are of great interest for regenerative purposes since they are believed to aid axonal growth. With the view set on the strategies to achieve reconnection between neuronal structures, it is of great importance to characterize the behaviour of these cells on long thread-like structures that may efficiently guide cell spread in a targeted way. Here, rat OECs were studied on polycaprolactone (PCL) long monofilaments, on long bars and on discs. PCL turns out to be an excellent substrate for OECs. The cells cover long distances along the monofilaments and colonize completely these struc- tures. With the help of a one-dimensional (1D) analytical model, a migration coefficient, a net proliferation rate constant and the fraction of all cells which undergo migration were obtained. The separate effect of the three phenomena summarized by these parameters on the colo- nization patterns of the 1D path was qualitatively dis- cussed. Other features of interest were also determined, such as the speed of the advance front of colonization and the order of the kinetics of net cell proliferation. Charac- terizing migration by means of these quantities may be useful for comparing and predicting features of the colo- nization process (such as times, patterns, advance fronts and proportion of motile cells) of different cell substrate combinations. es_ES
dc.description.sponsorship Support of the Spanish Science & Innovation Ministery through project MAT2008-06434 is acknowledged. MMP and CMR acknowledge partial funding through the "Convenio de Colaboracion para la Investigacion Basica y Traslacional en Medicina Regenerativa" between the Instituto Nacional de Salud Carlos III, the Conselleria de Sanidad of the Generalitat Valenciana and the Foundation Centro de Investigacion Principe Felipe. en_EN
dc.language Inglés es_ES
dc.publisher Humana Press es_ES
dc.relation.ispartof Cell Biochemistry and Biophysics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Olfactory ensheathing cells es_ES
dc.subject Polycaprolactone scaffolds es_ES
dc.subject Migration es_ES
dc.subject Diffusion es_ES
dc.subject Colonization es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title One-dimensional migration of olfactory ensheathing cells on synthetic materials: Experimental and numerical characterization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12013-012-9399-1
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2008-06434/ES/MATERIALES PARA REGENERACION NEURAL Y ANGIOGENESIS EN EL SISTEMA NERVIOSO CENTRAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Perez Garnes, M.; Martínez Ramos, C.; Barcia, JA.; Escobar Ivirico, JL.; Gomez Pinedo, UA.; Vallés Lluch, A.; Monleón Pradas, M. (2013). One-dimensional migration of olfactory ensheathing cells on synthetic materials: Experimental and numerical characterization. Cell Biochemistry and Biophysics. 65:21-36. https://doi.org/10.1007/s12013-012-9399-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s12013-012-9399-1 es_ES
dc.description.upvformatpinicio 21 es_ES
dc.description.upvformatpfin 36 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.relation.senia 235258
dc.identifier.eissn 1559-0283
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Centro de Investigación Príncipe Felipe es_ES
dc.description.references Stokols, S., Sakamoto, J., Breckon, C., Holt, T., Weiss, J., & Tuszynski, M. H. (2006). Templated agarose scaffolds support linear axonal regeneration. Tissue Engineering, 12(10), 2777–2787. es_ES
dc.description.references Wei, Y. T., Tian, W. M., Yu, X., Cui, F. Z., Hou, S. P., Xu, Q. Y., et al. (2007). Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain. Biomedical Materials, 2(3), 142–146. es_ES
dc.description.references Yao, L., Wang, S., Cui, W., Sherlock, R., O’Connell, C., Damodaran, G., et al. (2009). Effect of functionalized micropatterned PLGA on guided neurite growth. Acta Biomaterialia, 5(2), 580–588. es_ES
dc.description.references Chehrehasa, F., Windus, L. C. E., Ekberg, J. A. K., Scott, S. E., Amaya, D., Mackay-Sim, A., et al. (2010). Olfactory glia enhance neonatal axon regeneration. Molecular and Cellular Neuroscience, 45(3), 277–288. es_ES
dc.description.references Chen, B. K., Knight, A. M., de Ruiter, G. C., Spinner, R. J., Yaszemski, M. J., Currier, B. L., et al. (2009). Axon regeneration through scaffold into distal spinal cord after transection. Journal of Neurotrauma, 26(10), 1759–1771. es_ES
dc.description.references Goto, E., Mukozawa, M., Mori, H., & Hara, M. (2010). A rolled sheet of collagen gel with cultured Schwann cells: Model of nerve conduit to enhance neurite growth. Journal of Bioscience and Bioengineering, 109(5), 512–518. es_ES
dc.description.references Lietz, M., Dreesmann, L., Hoss, M., Oberhoffner, S., & Schlosshauer, B. (2006). Neuro tissue engineering of glial nerve guides and the impact of different cell types. Biomaterials, 27(8), 1425–1436. es_ES
dc.description.references Radtke, C., Sasaki, M., Lankford, K. L., Vogt, P. M., & Kocsis, J. D. (2008). Potential of olfactory ensheathing cells for cell-based therapy in spinal cord injury. Journal of Rehabilitation Research and Development, 45(1), 141–151. es_ES
dc.description.references Wei, Y., Miao, X., Xian, M., Zhang, C., Liu, X., Zhao, H., et al. (2008). Effects of transplanting olfactory ensheathing cells on recovery of olfactory epithelium after olfactory nerve transection in rats. Medical Science Monitor, 14(10), 198–204. es_ES
dc.description.references Tennent, R., & Chuah, M. I. (1996). Ultrastructural study of ensheathing cells in early development of olfactory axons. Brain Research, Developmental Brain Research, 95(1), 135–139. es_ES
dc.description.references Doucette, R. (1990). Glial influences on axonal growth in the primary olfactory system. Glia, 3(6), 433–449. es_ES
dc.description.references Field, P., Li, Y., & Raisman, G. (2003). Ensheathment of the olfactory nerves in the adult rat. Journal of Neurocytology, 32(3), 317–324. es_ES
dc.description.references Boyd, J. G., Doucette, R., & Kawaja, M. D. (2005). Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. Faseb Journal, 19(7), 694–703. es_ES
dc.description.references Franklin, R. J., Gilson, J. M., Franceschini, I. A., & Barnett, S. C. (1996). Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia, 17(3), 217–224. es_ES
dc.description.references Imaizumi, T., Lankford, K. L., Waxman, S. G., Greer, C. A., & Kocsis, J. D. (1998). Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. Journal of Neuroscience, 18(16), 6176–6185. es_ES
dc.description.references Raisman, G. (2001). Olfactory ensheathing cells - another miracle cure for spinal cord injury? Nature Reviews Neuroscience, 2(5), 369–375. es_ES
dc.description.references Ramón-Cueto, A., Cordero, M. I., Santos-Benito, F. F., & Avila, J. (2000). Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron, 25(2), 425–435. es_ES
dc.description.references Chuah, M. I., Choi-Lundberg, D., Weston, S., Vincent, A. J., Chung, R. S., Vickers, J. C., et al. (2004). Olfactory ensheathing cells promote collateral axonal branching in the injured adult rat spinal cord. Experimental Neurology, 185(1), 15–25. es_ES
dc.description.references Bellamkonda, R. V. (2006). Peripheral nerve regeneration: An opinion on channels, scaffolds and anisotropy. Biomaterials, 27(19), 3515–3518. es_ES
dc.description.references Liu, Y., Gong, Z., Liu, L., & Sun, H. (2010). Combined effect of olfactory ensheathing cell transplantation and glial cell line-derived neurotrophic factor (GDNF) intravitreal injection on optic nerve injury in rats. Molecular Vision, 16, 2903–2910. es_ES
dc.description.references Zhu, Y., Cao, L., Su, Z., Mu, L., Yuan, Y., Gao, L., et al. (2010). Olfactory ensheathing cells: Attractant of neural progenitor migration to olfactory bulb. Glia, 58(6), 716–729. es_ES
dc.description.references Basiri, M., & Doucette, R. (2010). Sensorimotor cortex aspiration: A model for studying Wallerian degeneration-induced glial reactivity along the entire length of a single CNS axonal pathway. Brain Research Bulletin, 81(1), 43–52. es_ES
dc.description.references Li, Y., Carlstedt, T., Berthold, C.-H., & Raisman, G. (2004). Interaction of transplanted olfactory-ensheathing cells and host astrocytic processes provides a bridge for axons to regenerate across the dorsal root entry zone. Experimental Neurology, 188(2), 300–308. es_ES
dc.description.references Li, Y., Yamamoto, M., Raisman, G., Choi, D., & Carlstedt, T. (2007). An experimental model of ventral root repair showing the beneficial effect of transplanting olfactory ensheathing cells. Neurosurgery, 60(4), 734–741. es_ES
dc.description.references Ramón-Cueto, A., Plant, G. W., Avila, J., & Bunge, M. B. (1998). Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. The Journal of Neuroscience, 18(10), 3803–3815. es_ES
dc.description.references Gómez-Pinedo, U., Vidueira, S., Sancho, F. J., García-Verdugo, J. M., Matías-Guiu, J., & Barcia, J. A. (2011). Olfactory ensheathing glia enhances reentry of axons into the brain from peripheral nerve grafts bridging the substantia nigra with the striatum. Neuroscience Letters, 494(2), 104–108. es_ES
dc.description.references Graziadei, P. P., Levine, R. R., & Graziadei, G. A. (1978). Regeneration of olfactory axons and synapse formation in the forebrain after bulbectomy in neonatal mice. Proceedings of the National academy of Sciences of the United States of America, 75(10), 5230–5234. es_ES
dc.description.references Cao, L., Liu, L., Chen, Z. Y., Wang, L. M., Ye, J. L., Qiu, H. Y., et al. (2004). Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair. Brain, 127(3), 535–549. es_ES
dc.description.references Cao, L., Su, Z., Zhou, Q., Lv, B., Liu, X., Jiao, L., et al. (2006). Glial cell line-derived neurotrophic factor promotes olfactory ensheathing cells migration. Glia, 54(6), 536–544. es_ES
dc.description.references Woodhall, E., West, A. K., & Chuah, M. I. (2001). Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Research. Molecular Brain Research, 88(1–2), 203–213. es_ES
dc.description.references Cao, L., Zhu, Y. L., Su, Z., Lv, B., Huang, Z., Mu, L., et al. (2007). Olfactory ensheathing cells promote migration of Schwann cells by secreted nerve growth factor. Glia, 55(9), 897–904. es_ES
dc.description.references Doucette, R. (1996). Immunohistochemical localization of laminin, fibronectin and collagen type IV in the nerve fiber layer of the olfactory bulb. International Journal of Developmental Neuroscience, 14(7–8), 945–959. es_ES
dc.description.references Franceschini, I. A., & Barnett, S. C. (1996). Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Developmental Biology, 173(1), 327–343. es_ES
dc.description.references Runyan, S. A., & Phelps, P. E. (2009). Mouse olfactory ensheathing glia enhance axon outgrowth on a myelin substrate in vitro. Experimental Neurology, 216(1), 95–104. es_ES
dc.description.references Shen, Y., Qian, Y., Zhang, H., Zuo, B., Lu, Z., Fan, Z., et al. (2010). Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds. Cell Transplantation, 19(2), 147–157. es_ES
dc.description.references Li, B.-C., Jiao, S.-S., Xu, C., You, H., & Chen, J.-M. (2010). PLGA conduit seeded with olfactory ensheathing cells for bridging sciatic nerve defect of rats. Journal of Biomedical Materials Research, Part A, 94(3), 769–780. es_ES
dc.description.references Clements, I. P., Kim, Y. T., English, A. W., Lu, X., Chung, A., & Bellamkonda, R. V. (2009). Thin-film enhanced nerve guidance channels for peripheral nerve repair. Biomaterials, 30(23–24), 3834–3846. es_ES
dc.description.references Martín-López, E., Nieto-Díaz, M., & Nieto-Sampedro, M. (2012). Differential adhesiveness and neurite-promoting activity for neural cells of chitosan, gelatin, and poly-l-lysine films. Journal of Biomaterials Applications, 26(7), 791–809. es_ES
dc.description.references Cai, J., Peng, X., Nelson, K. D., Eberhart, R., & Smith, G. M. (2005). Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation. Journal of Biomedical Material Research Part A, 75(2), 374–386. es_ES
dc.description.references Novikova, L. N., Mosahebi, A., Wiberg, M., Terenghi, G., Kellerth, J. O., & Novikov, L. N. (2006). Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. Journal of Biomedical Materials Research, Part A, 77(2), 242–252. es_ES
dc.description.references Tang, Z. P., Liu, N., Li, Z. W., Xie, X. W., Chen, Y., Shi, Y. H., et al. (2010). In vitro evaluation of the compatibility of a novel collagen-heparan sulfate biological scaffold with olfactory ensheathing cells. Chinese Medical Journal (English), 123(10), 1299–1304. es_ES
dc.description.references Wang, B., Zhao, Y., Lin, H., Chen, B., Zhang, J., Zhang, J., et al. (2006). Phenotypical analysis of adult rat olfactory ensheathing cells on 3-D collagen scaffolds. Neuroscience Letters, 401(1–2), 65–70. es_ES
dc.description.references Guarnieri, D., De Capua, A., Ventre, M., Borzacchiello, A., Pedone, C., Marasco, D., et al. (2010). Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomaterialia, 6(7), 2532–2539. es_ES
dc.description.references Ngo, T. T., Waggoner, P. J., Romero, A. A., Nelson, K. D., Eberhart, R. C., & Smith, G. M. (2003). Poly(l-lactide) microfilaments enhance peripheral nerve regeneration across extended nerve lesions. Journal of Neuroscience Research, 72(2), 227–238. es_ES
dc.description.references Schnell, E., Klinkhammer, K., Balzer, S., Brook, G., Klee, D., Dalton, P., et al. (2007). Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-e-caprolactone and a collagen/poly-e-caprolactone blend. Biomaterials, 28(19), 3012–3025. es_ES
dc.description.references Lim, S. H., Liu, X. Y., Song, H., Yarema, K. J., & Mao, H. Q. (2010). The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials, 31(34), 9031–9039. es_ES
dc.description.references Wong, D. Y., Hollister, S. J., Krebsbach, P. H., & Nosrat, C. (2007). Poly(epsilon-caprolactone) and poly (l-lactic-co-glycolic acid) degradable polymer sponges attenuate astrocyte response and lesion growth in acute traumatic brain injury. Tissue Engineering, 13(10), 2515–2523. es_ES
dc.description.references Wong, D. Y., Krebsbach, P. H., & Hollister, S. J. (2008). Brain cortex regeneration affected by scaffold architectures. Journal of Neurosurgery, 109(4), 715–722. es_ES
dc.description.references Wong, D. Y., Leveque, J. C., Brumblay, H., Krebsbach, P. H., Hollister, S. J., & Lamarca, F. (2008). Macro-architectures in spinal cord scaffold implants influence regeneration. Journal of Neurotrauma, 25(8), 1027–1037. es_ES
dc.description.references Pierucci, A., de Duek, E. A., & de Oliveira, A. L. (2008). Peripheral nerve regeneration through biodegradable conduits prepared using solvent evaporation. Tissue Engineering Part A, 14(5), 595–606. es_ES
dc.description.references Vleggeert-Lankamp, C. L., de Ruiter, G. C., Wolfs, J. F., Pego, A. P., van den Berg, R. J., Feirabend, H. K., et al. (2007). Pores in synthetic nerve conduits are beneficial to regeneration. Journal of Biomedical Material Research Part A, 80(4), 965–982. es_ES
dc.description.references Cai, A. Q., Landman, K. A., & Hughes, B. D. (2007). Multi-scale modeling of a wound-healing cell migration assay. Journal of Theoretical Biology, 245(3), 576–594. es_ES
dc.description.references Maini, P. K., McElwain, D. L., & Leavesley, D. I. (2004). Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Engineering, 10(3–4), 475–482. es_ES
dc.description.references Dokukina, I. V., & Gracheva, M. E. (2010). A model of fibroblast motility on substrates with different rigidities. Biophysical Journal, 98(12), 2794–2803. es_ES
dc.description.references Schneider, I. C., & Haugh, J. M. (2004). Spatial analysis of 3′ phosphoinositide signaling in living fibroblasts: II. Parameter estimates for individual cells from experiments. Biophysical Journal, 86(1), 599–608. es_ES
dc.description.references Marcy, Y., Prost, J., Carlier, M.-F., & Sykes, C. C. (2004). Forces generated during actin-based propulsion: A direct measurement by micromanipulation. Proceedings of the National academy of Sciences of the United States of America, 101(16), 5992–5997. es_ES
dc.description.references Mogilner, A., & Oster, G. (2003). Polymer motors: Pushing out the front and pulling up the back. Current Biology, 13(18), R721–R733. es_ES
dc.description.references Cheng, G., Youssef, B. B., Markenscoff, P., & Zygourakis, K. (2006). Cell population dynamics modulate the rates of tissue growth processes. Biophysical Journal, 90(3), 713–724. es_ES
dc.description.references Galbusera, F., Cioffi, M., Raimondi, M. T., & Pietrabissa, R. (2007). Computational modeling of combined cell population dynamics and oxygen transport in engineered tissue subject to interstitial perfusion. Computer Methods Biomechanics and Biomedical Engineering, 10(4), 279–287. es_ES
dc.description.references Hatzikirou, H., & Deutsch, A. (2008). Cellular automata as microscopic models of cell migration in heterogeneous environments. Current Topics in Developmental Biology, 81, 401–434. es_ES
dc.description.references Reffay, M., Petitjean, L., Coscoy, S., Grasland-Mongrain, E., Amblard, F., Buguin, A., et al. (2011). Orientation and polarity in collectively migrating cell structures: Statics and dynamics. Biophysical Journal, 100(11), 2566–2575. es_ES
dc.description.references Chung, C. A., Yang, C. W., & Chen, C. W. (2006). Analysis of cell growth and diffusion in a scaffold for cartilage tissue engineering. Biotechnology and Bioengineering, 94(6), 1138–1146. es_ES
dc.description.references Dunn, J. C., Chan, W. Y., Cristini, V., Kim, J. S., Lowengrub, J., Singh, S., et al. (2006). Analysis of cell growth in three-dimensional scaffolds. Tissue Engineering, 12(4), 705–716. es_ES
dc.description.references Harms, B. D., Bassi, G. M., Horwitz, A. R., & Lauffenburger, D. A. (2005). Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophysical Journal, 88(2), 1479–1488. es_ES
dc.description.references Lemon, G., & King, J. (2007). Travelling-wave behaviour in a multiphase model of a population of cells in an artificial scaffold. Journal of Mathematical Biology, 55(4), 449–480. es_ES
dc.description.references Fisher, R. (1937). The wave of advance of advantageous genes. Annals of Eugenics, 7, 355–369. es_ES
dc.description.references Graner, F.o., & Glazier, J. A. (1992). Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical Review Letters, 69(13), 2013–2016. es_ES
dc.description.references Ouaknin, G. Y., & Bar-Yoseph, P. Z. (2009). Stochastic collective movement of cells and fingering morphology: No maverick cells. Biophysical Journal, 97(7), 1811–1821. es_ES
dc.description.references Savill, N. J., & Hogeweg, P. (1997). Modelling morphogenesis: From single cells to crawling slugs. Journal of Theoretical Biology, 184(3), 229–235. es_ES
dc.description.references Brockes, J. P., Fields, K. L., & Raff, M. C. (1979). Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Research, 165, 105–118. es_ES
dc.description.references Selinummi, J., Seppala, J., Yli-Harja, O., & Puhakka, J. A. (2005). Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques, 39(6), 859–863. es_ES
dc.description.references Gupta, D., Venugopal, J., Prabhakaran, M. P., Dev, V. R., Low, S., Choon, A. T., et al. (2009). Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomaterialia, 5(7), 2560–2569. es_ES
dc.description.references Nisbet, D. R., Yu, L. M., Zahir, T., Forsythe, J. S., & Shoichet, M. S. (2008). Characterization of neural stem cells on electrospun poly(epsilon-caprolactone) submicron scaffolds: Evaluating their potential in neural tissue engineering. Journal of Biomaterials Science, Polymer Edition, 19(5), 623–634. es_ES
dc.description.references Huang, Z. H., Wang, Y., Cao, L., Su, Z. D., Zhu, Y. L., Chen, Y. Z., et al. (2008). Migratory properties of cultured olfactory ensheathing cells by single-cell migration assay. Cell Research, 18, 479–490. es_ES
dc.description.references Ekberg, J. A. K., Amaya, D., Mackay-Sim, A., & St. John, J. A. (2012). The migratory of olfactory ensheathing cells during development and regeneration. Neurosignals. doi: 10.1159/000330895 . es_ES
dc.description.references Ruitenberg, M. J., Vukovic, J., Sarich, J., Busfield, S. J., & Plant, G..W. (2006). Olfactory ensheathing cells: characteristics, genetic engineering, and therapeutic potential. Journal of Neurotrauma, 23, 468–478. es_ES
dc.description.references Chaikin, P. M., & Lubensky, T. C. (1995). Principles of condensed matter physics (p. 371). Cambridge, UK: Cambridge University Press. es_ES
dc.description.references Simpson, M. J., Landman, K. A., & Hughes, B. D. (2010). Cell invasion with proliferation mechanisms motivated by time-lapse data. Physica A, 389, 3779–3790. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem