- -

Structural and vibrational study of cubic Sb2O3 under high pressure

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Structural and vibrational study of cubic Sb2O3 under high pressure

Show full item record

Pereira, ALJ.; Gracia, L.; Santamaría-Pérez, D.; Vilaplana Cerda, RI.; Manjón Herrera, FJ.; Errandonea, D.; Nalin, M.... (2012). Structural and vibrational study of cubic Sb2O3 under high pressure. Physical Review B. 85(17):174108-1-174108-11. https://doi.org/10.1103/PhysRevB.85.174108

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/48192

Files in this item

Item Metadata

Title: Structural and vibrational study of cubic Sb2O3 under high pressure
Author: Pereira, A. L. J. Gracia, L. Santamaría-Pérez, D. Vilaplana Cerda, Rosario Isabel Manjón Herrera, Francisco Javier Errandonea, D. Nalin, M. Beltrán, A.
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Issued date:
We report an experimental and theoretical study of antimony oxide (Sb 2O 3) in its cubic phase (senarmontite) under high pressure. X-ray diffraction and Raman scattering measurements up to 18 and 25 GPa, respectively, have ...[+]
Subjects: X-Ray Diffraction , Antimony trioxide , Powder Diffraction , Raman-Spectroscopy , Phase-transitions , Density , Oxide , Polymorphs , Collapse , Glass
Copyrigths: Reserva de todos los derechos
Physical Review B. (issn: 1098-0121 ) (eissn: 1550-235X )
DOI: 10.1103/PhysRevB.85.174108
American Physical Society
Publisher version: http://journals.aps.org/prb/pdf/10.1103/PhysRevB.85.174108
Project ID:
info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/
info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/
info:eu-repo/grantAgreement/MICINN//CTQ2009-14596-C02-01/ES/Compresibilidad de Materiales/
info:eu-repo/grantAgreement/Gobierno de la Comunidad de Madrid//S2009%2FPPQ-1551/ES/Química a alta presión/
info:eu-repo/grantAgreement/CAPES//BEX 3939%2F10-3/
Financial support from the Spanish Consolider Ingenio 2010 Program (Project No. CDS2007-00045) is acknowledged. The work was also supported by Spanish MICCIN under Projects No. CTQ2009-14596-C02-01 and No. MAT2010-21270-C04-01/04 ...[+]
Type: Artículo


Youk, J. H., Kambour, R. P., & MacKnight, W. J. (2000). Polymerization of Ethylene Terephthalate Cyclic Oligomers with Antimony Trioxide†. Macromolecules, 33(10), 3594-3599. doi:10.1021/ma991838d

Zabinski, J. S., Donley, M. S., & McDevitt, N. T. (1993). Mechanistic study of the synergism between Sb2O3 and MoS2 lubricant systems using Raman spectroscopy. Wear, 165(1), 103-108. doi:10.1016/0043-1648(93)90378-y

Ghosh, A., & Chakravorty, D. (1991). Transport properties of semiconducting CuO-Sb2O3-P2O5glasses. Journal of Physics: Condensed Matter, 3(19), 3335-3342. doi:10.1088/0953-8984/3/19/012 [+]
Youk, J. H., Kambour, R. P., & MacKnight, W. J. (2000). Polymerization of Ethylene Terephthalate Cyclic Oligomers with Antimony Trioxide†. Macromolecules, 33(10), 3594-3599. doi:10.1021/ma991838d

Zabinski, J. S., Donley, M. S., & McDevitt, N. T. (1993). Mechanistic study of the synergism between Sb2O3 and MoS2 lubricant systems using Raman spectroscopy. Wear, 165(1), 103-108. doi:10.1016/0043-1648(93)90378-y

Ghosh, A., & Chakravorty, D. (1991). Transport properties of semiconducting CuO-Sb2O3-P2O5glasses. Journal of Physics: Condensed Matter, 3(19), 3335-3342. doi:10.1088/0953-8984/3/19/012

Gopalakrishnan, P. S., & Manohar, H. (1975). Kinetics and mechanism of the transformation in antimony trioxide from orthorhombic valentinite to cubic senarmontite. Journal of Solid State Chemistry, 15(1), 61-67. doi:10.1016/0022-4596(75)90271-6

Zachariasen, W. H. (1932). THE ATOMIC ARRANGEMENT IN GLASS. Journal of the American Chemical Society, 54(10), 3841-3851. doi:10.1021/ja01349a006

Matsumoto, A., Koyama, Y., Togo, A., Choi, M., & Tanaka, I. (2011). Electronic structures of dynamically stable As2O3, Sb2O3, and Bi2O3crystal polymorphs. Physical Review B, 83(21). doi:10.1103/physrevb.83.214110

Miller, P. J., & Cody, C. A. (1982). Infrared and Raman investigation of vitreous antimony trioxide. Spectrochimica Acta Part A: Molecular Spectroscopy, 38(5), 555-559. doi:10.1016/0584-8539(82)80146-3

Svensson, C. (1975). Refinement of the crystal structure of cubic antimony trioxide, Sb2O3. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 31(8), 2016-2018. doi:10.1107/s0567740875006759

Wood, C., van Pelt, B., & Dwight, A. (1972). The Optical Properties of Amorphous and Crystalline Sb2O3. Physica Status Solidi (b), 54(2), 701-706. doi:10.1002/pssb.2220540234

Nalin, M., Messaddeq, Y., Ribeiro, S. J. L., Poulain, M., Briois, V., Brunklaus, G., … Eckert, H. (2004). Structural organization and thermal properties of the Sb2O3–SbPO4glass system. J. Mater. Chem., 14(23), 3398-3405. doi:10.1039/b406075j

Orosel, D., Dinnebier, R. E., Blatov, V. A., & Jansen, M. (2012). Structure of a new high-pressure–high-temperature modification of antimony(III) oxide, γ-Sb2O3, from high-resolution synchrotron powder diffraction data. Acta Crystallographica Section B Structural Science, 68(1), 1-7. doi:10.1107/s0108768111046751

Grzechnik, A. (1999). Compressibility and Vibrational Modes in Solid As4O6. Journal of Solid State Chemistry, 144(2), 416-422. doi:10.1006/jssc.1999.8189

Soignard, E., Amin, S. A., Mei, Q., Benmore, C. J., & Yarger, J. L. (2008). High-pressure behavior ofAs2O3: Amorphous-amorphous and crystalline-amorphous transitions. Physical Review B, 77(14). doi:10.1103/physrevb.77.144113

Chouinard, C., & Desgreniers, S. (1999). Bi2O3 under hydrostatic pressure: observation of a pressure-induced amorphization. Solid State Communications, 113(3), 125-129. doi:10.1016/s0038-1098(99)00463-9

Geng, A., Cao, L., Wan, C., & Ma, Y. (2011). High-pressure Raman investigation of the semiconductor antimony oxide. physica status solidi (c), 8(5), 1708-1711. doi:10.1002/pssc.201000786

Manjón, F. J., & Errandonea, D. (2009). Pressure-induced structural phase transitions in materials and earth sciences. physica status solidi (b), 246(1), 9-31. doi:10.1002/pssb.200844238

Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673

Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-i

Errandonea, D., Santamaria-Perez, D., Bondarenko, T., & Khyzhun, O. (2010). New high-pressure phase of HfTiO4 and ZrTiO4 ceramics. Materials Research Bulletin, 45(11), 1732-1735. doi:10.1016/j.materresbull.2010.06.061

Errandonea, D., Santamaria-Perez, D., Achary, S. N., Tyagi, A. K., Gall, P., & Gougeon, P. (2011). High-pressure x-ray diffraction study of CdMoO4 and EuMoO4. Journal of Applied Physics, 109(4), 043510-043510-5. doi:10.1063/1.3553850

Stroppa, D. G., Montoro, L. A., Beltrán, A., Conti, T. G., da Silva, R. O., Andrés, J., … Ramirez, A. J. (2009). Unveiling the Chemical and Morphological Features of Sb−SnO2Nanocrystals by the Combined Use of High-Resolution Transmission Electron Microscopy and ab Initio Surface Energy Calculations. Journal of the American Chemical Society, 131(40), 14544-14548. doi:10.1021/ja905896u

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785

Beltrán, A., Gracia, L., & Andrés, J. (2006). Density Functional Theory Study of the Brookite Surfaces and Phase Transitions between Natural Titania Polymorphs. The Journal of Physical Chemistry B, 110(46), 23417-23423. doi:10.1021/jp0643000

Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495

Bučko, T., Hafner, J., Lebègue, S., & Ángyán, J. G. (2010). Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections. The Journal of Physical Chemistry A, 114(43), 11814-11824. doi:10.1021/jp106469x

Birch, F. (1952). Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research, 57(2), 227-286. doi:10.1029/jz057i002p00227

Whitten, A. E., Dittrich, B., Spackman, M. A., Turner, P., & Brown, T. C. (2004). Charge density analysis of two polymorphs of antimony(iii) oxide. Dalton Transactions, (1), 23. doi:10.1039/b312550e

Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110

Cody, C. A., DiCarlo, L., & Darlington, R. K. (1979). Vibrational and thermal study of antimony oxides. Inorganic Chemistry, 18(6), 1572-1576. doi:10.1021/ic50196a036

Gilliam, S. J., Jensen, J. O., Banerjee, A., Zeroka, D., Kirkby, S. J., & Merrow, C. N. (2004). A theoretical and experimental study of Sb4O6: vibrational analysis, infrared, and Raman spectra. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(1-2), 425-434. doi:10.1016/s1386-1425(03)00245-2

Mestl, G., Ruiz, P., Delmon, B., & Knozinger, H. (1994). Sb2O3/Sb2O4 in reducing/oxidizing environments: an in situ Raman spectroscopy study. The Journal of Physical Chemistry, 98(44), 11276-11282. doi:10.1021/j100095a008

Blower, S. K., & Greaves, C. (1988). The structure of β-Bi2O3 from powder neutron diffraction data. Acta Crystallographica Section C Crystal Structure Communications, 44(4), 587-589. doi:10.1107/s0108270187011661

Johansson, B., & Li, S. (2009). Itinerantf-electron elements. Philosophical Magazine, 89(22-24), 1793-1799. doi:10.1080/14786430902917632

Akahama, Y., Kobayashi, M., & Kawamura, H. (1991). High-Pressure X-Ray Diffraction Study on Electronics-dTransition in Zirconium. Journal of the Physical Society of Japan, 60(10), 3211-3214. doi:10.1143/jpsj.60.3211

Occelli, F., Farber, D. L., Badro, J., Aracne, C. M., Teter, D. M., Hanfland, M., … Couzinet, B. (2004). Experimental Evidence for a High-Pressure Isostructural Phase Transition in Osmium. Physical Review Letters, 93(9). doi:10.1103/physrevlett.93.095502

Zarechnaya, E., Dubrovinskaia, N., Caracas, R., Merlini, M., Hanfland, M., Filinchuk, Y., … Dubrovinsky, L. (2010). Pressure-induced isostructural phase transformation inγ-B28. Physical Review B, 82(18). doi:10.1103/physrevb.82.184111

Chatterjee, A., Singh, A. K., & Jayaraman, A. (1972). Pressure-Induced Electronic Collapse and Structural Changes in Rare-Earth Monochalcogenides. Physical Review B, 6(6), 2285-2291. doi:10.1103/physrevb.6.2285

Chefki, M., Abd-Elmeguid, M. M., Micklitz, H., Huhnt, C., Schlabitz, W., Reehuis, M., & Jeitschko, W. (1998). Pressure-induced Transition of the Sublattice Magnetization inEuCo2P2: Change from Local MomentEu(4f)to ItinerantCo(3d)Magnetism. Physical Review Letters, 80(4), 802-805. doi:10.1103/physrevlett.80.802

Caracas, R., & Gonze, X. (2004). Structural, electronic, and dynamical properties of calaveriteAuTe2under pressure. Physical Review B, 69(14). doi:10.1103/physrevb.69.144114

Svane, A., Strange, P., Temmerman, W. M., Szotek, Z., Winter, H., & Petit, L. (2001). Pressure-Induced Valence Transitions in Rare Earth Chalcogenides and Pnictides. physica status solidi (b), 223(1), 105-116. doi:10.1002/1521-3951(200101)223:1<105::aid-pssb105>3.0.co;2-i

Yoo, C. S., Maddox, B., Klepeis, J.-H. P., Iota, V., Evans, W., McMahan, A., … Pickett, W. E. (2005). First-Order Isostructural Mott Transition in Highly Compressed MnO. Physical Review Letters, 94(11). doi:10.1103/physrevlett.94.115502

Rosner, H., Koudela, D., Schwarz, U., Handstein, A., Hanfland, M., Opahle, I., … Richter, M. (2006). Magneto-elastic lattice collapse in YCo5. Nature Physics, 2(7), 469-472. doi:10.1038/nphys341

Polian, A., Gauthier, M., Souza, S. M., Trichês, D. M., Cardoso de Lima, J., & Grandi, T. A. (2011). Two-dimensional pressure-induced electronic topological transition in Bi2Te3. Physical Review B, 83(11). doi:10.1103/physrevb.83.113106

Vilaplana, R., Gomis, O., Manjón, F. J., Segura, A., Pérez-González, E., Rodríguez-Hernández, P., … Kucek, V. (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B, 84(10). doi:10.1103/physrevb.84.104112

Vilaplana, R., Santamaría-Pérez, D., Gomis, O., Manjón, F. J., González, J., Segura, A., … Kucek, V. (2011). Structural and vibrational study of Bi2Se3under high pressure. Physical Review B, 84(18). doi:10.1103/physrevb.84.184110

Sakai, N., Kajiwara, T., Takemura, K., Minomura, S., & Fujii, Y. (1981). Pressure-induced phase transition in Sb2Te3. Solid State Communications, 40(12), 1045-1047. doi:10.1016/0038-1098(81)90248-9

Souza, S. M., Trichês, D. M., Poffo, C. M., de Lima, J. C., Grandi, T. A., & de Biasi, R. S. (2011). Structural, thermal, optical, and photoacoustic study of nanocrystalline Bi2Te3 produced by mechanical alloying. Journal of Applied Physics, 109(1), 013512. doi:10.1063/1.3520658

Åberg, D., Erhart, P., Crowhurst, J., Zaug, J. M., Goncharov, A. F., & Sadigh, B. (2010). Pressure-induced phase transition in the electronic structure of palladium nitride. Physical Review B, 82(10). doi:10.1103/physrevb.82.104116




This item appears in the following Collection(s)

Show full item record