- -

Structural and vibrational study of cubic Sb2O3 under high pressure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structural and vibrational study of cubic Sb2O3 under high pressure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pereira, A. L. J. es_ES
dc.contributor.author Gracia, L. es_ES
dc.contributor.author Santamaría-Pérez, D. es_ES
dc.contributor.author Vilaplana Cerda, Rosario Isabel es_ES
dc.contributor.author Manjón Herrera, Francisco Javier es_ES
dc.contributor.author Errandonea, D. es_ES
dc.contributor.author Nalin, M. es_ES
dc.contributor.author Beltrán, A. es_ES
dc.date.accessioned 2015-03-23T11:43:52Z
dc.date.available 2015-03-23T11:43:52Z
dc.date.issued 2012-05-18
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/48192
dc.description.abstract We report an experimental and theoretical study of antimony oxide (Sb 2O 3) in its cubic phase (senarmontite) under high pressure. X-ray diffraction and Raman scattering measurements up to 18 and 25 GPa, respectively, have been complemented with ab initio total-energy and lattice-dynamics calculations. X-ray diffraction measurements do not provide evidence of a space-group symmetry change in senarmontite up to 18 GPa. However, Raman scattering measurements evidence changes in the pressure coefficients of the Raman mode frequencies at 3.5 and 10 GPa, respectively. The behavior of the Raman modes with increasing pressure up to 25 GPa is fully reproduced by the lattice-dynamics calculations in cubic Sb 2O 3. Therefore, the combined analysis of both experiments and lattice-dynamics calculations suggest the occurrence of two isostructural phase transformations at 3.5 and 10 GPa, respectively. Total-energy calculations show that the isostructural phase transformations occur through local atomic displacements in which senarmontite loses its molecular character to become a three-dimensional solid. In addition, our calculations provide evidence that cubic senarmontite cannot undergo a phase transition to orthorhombic valentinite at high pressure, and that a phase transition to a ß-Bi 2O 3-type structure is possible above 25 GPa. © 2012 American Physical Society. es_ES
dc.description.sponsorship Financial support from the Spanish Consolider Ingenio 2010 Program (Project No. CDS2007-00045) is acknowledged. The work was also supported by Spanish MICCIN under Projects No. CTQ2009-14596-C02-01 and No. MAT2010-21270-C04-01/04 as well as from Comunidad de Madrid and European Social Fund, S2009/PPQ-1551 4161893 (QUIMAPRES) and from Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia under projects UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11. Spanish Fundacio Bancaixa Project No. P1-1A2009-08 and Brazilian Capes/Fundacion Carolina (BEX 3939/10-3) are also acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject X-Ray Diffraction es_ES
dc.subject Antimony trioxide es_ES
dc.subject Powder Diffraction es_ES
dc.subject Raman-Spectroscopy es_ES
dc.subject Phase-transitions es_ES
dc.subject Density es_ES
dc.subject Oxide es_ES
dc.subject Polymorphs es_ES
dc.subject Collapse es_ES
dc.subject Glass es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Structural and vibrational study of cubic Sb2O3 under high pressure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.85.174108
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-11-UPV2011-0914/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-04/ES/CRECIMIENTO Y CARACTERIZACION DE NANOESTRUCTURAS DE OXIDOS METALICOS BAJO ALTAS PRESIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-01/ES/SINTESIS Y CARACTERIZACION OPTICA, ELECTRONICA, ESTRUCTURAL Y VIBRACIONAL DE NUEVOS MATERIALES BAJO CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-14596-C02-01/ES/Compresibilidad de Materiales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de la Comunidad de Madrid//S2009%2FPPQ-1551/ES/Química a alta presión/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11-UPV2011-0966/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//P1·1A2009-08/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//BEX 3939%2F10-3/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Pereira, ALJ.; Gracia, L.; Santamaría-Pérez, D.; Vilaplana Cerda, RI.; Manjón Herrera, FJ.; Errandonea, D.; Nalin, M.... (2012). Structural and vibrational study of cubic Sb2O3 under high pressure. Physical Review B. 85(17):174108-1-174108-11. https://doi.org/10.1103/PhysRevB.85.174108 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://journals.aps.org/prb/pdf/10.1103/PhysRevB.85.174108 es_ES
dc.description.upvformatpinicio 174108-1 es_ES
dc.description.upvformatpfin 174108-11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 85 es_ES
dc.description.issue 17 es_ES
dc.relation.senia 230125
dc.identifier.eissn 1550-235X
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Fundació Caixa Castelló - Bancaixa; Universitat Jaume I es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Youk, J. H., Kambour, R. P., & MacKnight, W. J. (2000). Polymerization of Ethylene Terephthalate Cyclic Oligomers with Antimony Trioxide†. Macromolecules, 33(10), 3594-3599. doi:10.1021/ma991838d es_ES
dc.description.references Zabinski, J. S., Donley, M. S., & McDevitt, N. T. (1993). Mechanistic study of the synergism between Sb2O3 and MoS2 lubricant systems using Raman spectroscopy. Wear, 165(1), 103-108. doi:10.1016/0043-1648(93)90378-y es_ES
dc.description.references Ghosh, A., & Chakravorty, D. (1991). Transport properties of semiconducting CuO-Sb2O3-P2O5glasses. Journal of Physics: Condensed Matter, 3(19), 3335-3342. doi:10.1088/0953-8984/3/19/012 es_ES
dc.description.references Gopalakrishnan, P. S., & Manohar, H. (1975). Kinetics and mechanism of the transformation in antimony trioxide from orthorhombic valentinite to cubic senarmontite. Journal of Solid State Chemistry, 15(1), 61-67. doi:10.1016/0022-4596(75)90271-6 es_ES
dc.description.references Zachariasen, W. H. (1932). THE ATOMIC ARRANGEMENT IN GLASS. Journal of the American Chemical Society, 54(10), 3841-3851. doi:10.1021/ja01349a006 es_ES
dc.description.references Matsumoto, A., Koyama, Y., Togo, A., Choi, M., & Tanaka, I. (2011). Electronic structures of dynamically stable As2O3, Sb2O3, and Bi2O3crystal polymorphs. Physical Review B, 83(21). doi:10.1103/physrevb.83.214110 es_ES
dc.description.references Miller, P. J., & Cody, C. A. (1982). Infrared and Raman investigation of vitreous antimony trioxide. Spectrochimica Acta Part A: Molecular Spectroscopy, 38(5), 555-559. doi:10.1016/0584-8539(82)80146-3 es_ES
dc.description.references Svensson, C. (1975). Refinement of the crystal structure of cubic antimony trioxide, Sb2O3. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 31(8), 2016-2018. doi:10.1107/s0567740875006759 es_ES
dc.description.references Wood, C., van Pelt, B., & Dwight, A. (1972). The Optical Properties of Amorphous and Crystalline Sb2O3. Physica Status Solidi (b), 54(2), 701-706. doi:10.1002/pssb.2220540234 es_ES
dc.description.references Nalin, M., Messaddeq, Y., Ribeiro, S. J. L., Poulain, M., Briois, V., Brunklaus, G., … Eckert, H. (2004). Structural organization and thermal properties of the Sb2O3–SbPO4glass system. J. Mater. Chem., 14(23), 3398-3405. doi:10.1039/b406075j es_ES
dc.description.references Orosel, D., Dinnebier, R. E., Blatov, V. A., & Jansen, M. (2012). Structure of a new high-pressure–high-temperature modification of antimony(III) oxide, γ-Sb2O3, from high-resolution synchrotron powder diffraction data. Acta Crystallographica Section B Structural Science, 68(1), 1-7. doi:10.1107/s0108768111046751 es_ES
dc.description.references Grzechnik, A. (1999). Compressibility and Vibrational Modes in Solid As4O6. Journal of Solid State Chemistry, 144(2), 416-422. doi:10.1006/jssc.1999.8189 es_ES
dc.description.references Soignard, E., Amin, S. A., Mei, Q., Benmore, C. J., & Yarger, J. L. (2008). High-pressure behavior ofAs2O3: Amorphous-amorphous and crystalline-amorphous transitions. Physical Review B, 77(14). doi:10.1103/physrevb.77.144113 es_ES
dc.description.references Chouinard, C., & Desgreniers, S. (1999). Bi2O3 under hydrostatic pressure: observation of a pressure-induced amorphization. Solid State Communications, 113(3), 125-129. doi:10.1016/s0038-1098(99)00463-9 es_ES
dc.description.references Geng, A., Cao, L., Wan, C., & Ma, Y. (2011). High-pressure Raman investigation of the semiconductor antimony oxide. physica status solidi (c), 8(5), 1708-1711. doi:10.1002/pssc.201000786 es_ES
dc.description.references Manjón, F. J., & Errandonea, D. (2009). Pressure-induced structural phase transitions in materials and earth sciences. physica status solidi (b), 246(1), 9-31. doi:10.1002/pssb.200844238 es_ES
dc.description.references Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 es_ES
dc.description.references Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-i es_ES
dc.description.references Errandonea, D., Santamaria-Perez, D., Bondarenko, T., & Khyzhun, O. (2010). New high-pressure phase of HfTiO4 and ZrTiO4 ceramics. Materials Research Bulletin, 45(11), 1732-1735. doi:10.1016/j.materresbull.2010.06.061 es_ES
dc.description.references Errandonea, D., Santamaria-Perez, D., Achary, S. N., Tyagi, A. K., Gall, P., & Gougeon, P. (2011). High-pressure x-ray diffraction study of CdMoO4 and EuMoO4. Journal of Applied Physics, 109(4), 043510-043510-5. doi:10.1063/1.3553850 es_ES
dc.description.references Stroppa, D. G., Montoro, L. A., Beltrán, A., Conti, T. G., da Silva, R. O., Andrés, J., … Ramirez, A. J. (2009). Unveiling the Chemical and Morphological Features of Sb−SnO2Nanocrystals by the Combined Use of High-Resolution Transmission Electron Microscopy and ab Initio Surface Energy Calculations. Journal of the American Chemical Society, 131(40), 14544-14548. doi:10.1021/ja905896u es_ES
dc.description.references Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 es_ES
dc.description.references Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785 es_ES
dc.description.references Beltrán, A., Gracia, L., & Andrés, J. (2006). Density Functional Theory Study of the Brookite Surfaces and Phase Transitions between Natural Titania Polymorphs. The Journal of Physical Chemistry B, 110(46), 23417-23423. doi:10.1021/jp0643000 es_ES
dc.description.references Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495 es_ES
dc.description.references Bučko, T., Hafner, J., Lebègue, S., & Ángyán, J. G. (2010). Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections. The Journal of Physical Chemistry A, 114(43), 11814-11824. doi:10.1021/jp106469x es_ES
dc.description.references Birch, F. (1952). Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research, 57(2), 227-286. doi:10.1029/jz057i002p00227 es_ES
dc.description.references Whitten, A. E., Dittrich, B., Spackman, M. A., Turner, P., & Brown, T. C. (2004). Charge density analysis of two polymorphs of antimony(iii) oxide. Dalton Transactions, (1), 23. doi:10.1039/b312550e es_ES
dc.description.references Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110 es_ES
dc.description.references Cody, C. A., DiCarlo, L., & Darlington, R. K. (1979). Vibrational and thermal study of antimony oxides. Inorganic Chemistry, 18(6), 1572-1576. doi:10.1021/ic50196a036 es_ES
dc.description.references Gilliam, S. J., Jensen, J. O., Banerjee, A., Zeroka, D., Kirkby, S. J., & Merrow, C. N. (2004). A theoretical and experimental study of Sb4O6: vibrational analysis, infrared, and Raman spectra. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(1-2), 425-434. doi:10.1016/s1386-1425(03)00245-2 es_ES
dc.description.references Mestl, G., Ruiz, P., Delmon, B., & Knozinger, H. (1994). Sb2O3/Sb2O4 in reducing/oxidizing environments: an in situ Raman spectroscopy study. The Journal of Physical Chemistry, 98(44), 11276-11282. doi:10.1021/j100095a008 es_ES
dc.description.references Blower, S. K., & Greaves, C. (1988). The structure of β-Bi2O3 from powder neutron diffraction data. Acta Crystallographica Section C Crystal Structure Communications, 44(4), 587-589. doi:10.1107/s0108270187011661 es_ES
dc.description.references Johansson, B., & Li, S. (2009). Itinerantf-electron elements. Philosophical Magazine, 89(22-24), 1793-1799. doi:10.1080/14786430902917632 es_ES
dc.description.references Akahama, Y., Kobayashi, M., & Kawamura, H. (1991). High-Pressure X-Ray Diffraction Study on Electronics-dTransition in Zirconium. Journal of the Physical Society of Japan, 60(10), 3211-3214. doi:10.1143/jpsj.60.3211 es_ES
dc.description.references Occelli, F., Farber, D. L., Badro, J., Aracne, C. M., Teter, D. M., Hanfland, M., … Couzinet, B. (2004). Experimental Evidence for a High-Pressure Isostructural Phase Transition in Osmium. Physical Review Letters, 93(9). doi:10.1103/physrevlett.93.095502 es_ES
dc.description.references Zarechnaya, E., Dubrovinskaia, N., Caracas, R., Merlini, M., Hanfland, M., Filinchuk, Y., … Dubrovinsky, L. (2010). Pressure-induced isostructural phase transformation inγ-B28. Physical Review B, 82(18). doi:10.1103/physrevb.82.184111 es_ES
dc.description.references Chatterjee, A., Singh, A. K., & Jayaraman, A. (1972). Pressure-Induced Electronic Collapse and Structural Changes in Rare-Earth Monochalcogenides. Physical Review B, 6(6), 2285-2291. doi:10.1103/physrevb.6.2285 es_ES
dc.description.references Chefki, M., Abd-Elmeguid, M. M., Micklitz, H., Huhnt, C., Schlabitz, W., Reehuis, M., & Jeitschko, W. (1998). Pressure-induced Transition of the Sublattice Magnetization inEuCo2P2: Change from Local MomentEu(4f)to ItinerantCo(3d)Magnetism. Physical Review Letters, 80(4), 802-805. doi:10.1103/physrevlett.80.802 es_ES
dc.description.references Caracas, R., & Gonze, X. (2004). Structural, electronic, and dynamical properties of calaveriteAuTe2under pressure. Physical Review B, 69(14). doi:10.1103/physrevb.69.144114 es_ES
dc.description.references Svane, A., Strange, P., Temmerman, W. M., Szotek, Z., Winter, H., & Petit, L. (2001). Pressure-Induced Valence Transitions in Rare Earth Chalcogenides and Pnictides. physica status solidi (b), 223(1), 105-116. doi:10.1002/1521-3951(200101)223:1<105::aid-pssb105>3.0.co;2-i es_ES
dc.description.references Yoo, C. S., Maddox, B., Klepeis, J.-H. P., Iota, V., Evans, W., McMahan, A., … Pickett, W. E. (2005). First-Order Isostructural Mott Transition in Highly Compressed MnO. Physical Review Letters, 94(11). doi:10.1103/physrevlett.94.115502 es_ES
dc.description.references Rosner, H., Koudela, D., Schwarz, U., Handstein, A., Hanfland, M., Opahle, I., … Richter, M. (2006). Magneto-elastic lattice collapse in YCo5. Nature Physics, 2(7), 469-472. doi:10.1038/nphys341 es_ES
dc.description.references Polian, A., Gauthier, M., Souza, S. M., Trichês, D. M., Cardoso de Lima, J., & Grandi, T. A. (2011). Two-dimensional pressure-induced electronic topological transition in Bi2Te3. Physical Review B, 83(11). doi:10.1103/physrevb.83.113106 es_ES
dc.description.references Vilaplana, R., Gomis, O., Manjón, F. J., Segura, A., Pérez-González, E., Rodríguez-Hernández, P., … Kucek, V. (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B, 84(10). doi:10.1103/physrevb.84.104112 es_ES
dc.description.references Vilaplana, R., Santamaría-Pérez, D., Gomis, O., Manjón, F. J., González, J., Segura, A., … Kucek, V. (2011). Structural and vibrational study of Bi2Se3under high pressure. Physical Review B, 84(18). doi:10.1103/physrevb.84.184110 es_ES
dc.description.references Sakai, N., Kajiwara, T., Takemura, K., Minomura, S., & Fujii, Y. (1981). Pressure-induced phase transition in Sb2Te3. Solid State Communications, 40(12), 1045-1047. doi:10.1016/0038-1098(81)90248-9 es_ES
dc.description.references Souza, S. M., Trichês, D. M., Poffo, C. M., de Lima, J. C., Grandi, T. A., & de Biasi, R. S. (2011). Structural, thermal, optical, and photoacoustic study of nanocrystalline Bi2Te3 produced by mechanical alloying. Journal of Applied Physics, 109(1), 013512. doi:10.1063/1.3520658 es_ES
dc.description.references Åberg, D., Erhart, P., Crowhurst, J., Zaug, J. M., Goncharov, A. F., & Sadigh, B. (2010). Pressure-induced phase transition in the electronic structure of palladium nitride. Physical Review B, 82(10). doi:10.1103/physrevb.82.104116 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem