- -

Fixed point results for generalized cyclic contraction mappings in partial metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed point results for generalized cyclic contraction mappings in partial metric spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Abbas, Mujahid es_ES
dc.contributor.author Nazir, T. es_ES
dc.contributor.author Romaguera Bonilla, Salvador es_ES
dc.date.accessioned 2015-03-24T14:14:20Z
dc.date.available 2015-03-24T14:14:20Z
dc.date.issued 2012-09
dc.identifier.issn 1578-7303
dc.identifier.uri http://hdl.handle.net/10251/48226
dc.description.abstract Rus (Approx. Convexity 3:171–178, 2005) introduced the concept of cyclic contraction mapping. P˘acurar and Rus (Nonlinear Anal. 72:1181–1187, 2010) proved some fixed point results for cyclic φ-contraction mappings on a metric space. Karapinar (Appl. Math. Lett. 24:822–825, 2011) obtained a unique fixed point of cyclic weak φ- contraction mappings and studied well-posedness problem for such mappings. On the other hand, Matthews (Ann. New York Acad. Sci. 728:183–197, 1994) introduced the concept of a partial metric as a part of the study of denotational semantics of dataflow networks. He gave a modified version of the Banach contraction principle, more suitable in this context. In this paper, we initiate the study of fixed points of generalized cyclic contraction in the framework of partial metric spaces. We also present some examples to validate our results. es_ES
dc.description.sponsorship S. Romaguera acknowledges the support of the Ministry of Science and Innovation of Spain, grant MTM2009-12872-C02-01. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject 54H25 es_ES
dc.subject 47H10 es_ES
dc.subject Partial metric space es_ES
dc.subject Fixed point es_ES
dc.subject Cyclic contraction es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Fixed point results for generalized cyclic contraction mappings in partial metric spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13398-011-0051-5
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2009-12872-C02-01/ES/Construccion De Casi-Metricas Fuzzy, De Distancias De Complejidad Y De Dominios Cuantitativos. Aplicaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Abbas, M.; Nazir, T.; Romaguera Bonilla, S. (2012). Fixed point results for generalized cyclic contraction mappings in partial metric spaces. Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas. 106(2):287-297. https://doi.org/10.1007/s13398-011-0051-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s13398-011-0051-5 es_ES
dc.description.upvformatpinicio 287 es_ES
dc.description.upvformatpfin 297 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 106 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 231423
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Abdeljawad T., Karapinar E., Tas K.: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 24(11), 1894–1899 (2011). doi: 10.1016/j.aml.2011.5.014 es_ES
dc.description.references Altun, I., Erduran A.: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. article ID 508730 (2011). doi: 10.1155/2011/508730 es_ES
dc.description.references Altun I., Sadarangani K.: Corrigendum to “Generalized contractions on partial metric spaces” [Topology Appl. 157 (2010), 2778–2785]. Topol. Appl. 158, 1738–1740 (2011) es_ES
dc.description.references Altun I., Simsek H.: Some fixed point theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 1, 1–8 (2008) es_ES
dc.description.references Altun I., Sola F., Simsek H.: Generalized contractions on partial metric spaces. Topol. Appl. 157, 2778–2785 (2010) es_ES
dc.description.references Aydi, H.: Some fixed point results in ordered partial metric spaces. arxiv:1103.3680v1 [math.GN](2011) es_ES
dc.description.references Boyd D.W., Wong J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969) es_ES
dc.description.references Bukatin M., Kopperman R., Matthews S., Pajoohesh H.: Partial metric spaces. Am. Math. Monthly 116, 708–718 (2009) es_ES
dc.description.references Bukatin M.A., Shorina S.Yu. et al.: Partial metrics and co-continuous valuations. In: Nivat, M. (eds) Foundations of software science and computation structure Lecture notes in computer science vol 1378., pp. 125–139. Springer, Berlin (1998) es_ES
dc.description.references Derafshpour M., Rezapour S., Shahzad N.: On the existence of best proximity points of cyclic contractions. Adv. Dyn. Syst. Appl. 6, 33–40 (2011) es_ES
dc.description.references Heckmann R.: Approximation of metric spaces by partial metric spaces. Appl. Cat. Struct. 7, 71–83 (1999) es_ES
dc.description.references Karapinar E.: Fixed point theory for cyclic weak $${\phi}$$ -contraction. App. Math. Lett. 24, 822–825 (2011) es_ES
dc.description.references Karapinar, E.: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011,4 (2011). doi: 10.1186/1687-1812-2011-4 es_ES
dc.description.references Karapinar E.: Weak $${\varphi}$$ -contraction on partial metric spaces and existence of fixed points in partially ordered sets. Math. Aeterna. 1(4), 237–244 (2011) es_ES
dc.description.references Karapinar E., Erhan I.M.: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24, 1894–1899 (2011) es_ES
dc.description.references Karpagam S., Agrawal S.: Best proximity point theorems for cyclic orbital Meir–Keeler contraction maps. Nonlinear Anal. 74, 1040–1046 (2011) es_ES
dc.description.references Kirk W.A., Srinavasan P.S., Veeramani P.: Fixed points for mapping satisfying cylical contractive conditions. Fixed Point Theory. 4, 79–89 (2003) es_ES
dc.description.references Kosuru, G.S.R., Veeramani, P.: Cyclic contractions and best proximity pair theorems). arXiv:1012.1434v2 [math.FA] 29 May (2011) es_ES
dc.description.references Matthews S.G.: Partial metric topology. in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728, 183–197 (1994) es_ES
dc.description.references Neammanee K., Kaewkhao A.: Fixed points and best proximity points for multi-valued mapping satisfying cyclical condition. Int. J. Math. Sci. Appl. 1, 9 (2011) es_ES
dc.description.references Oltra S., Valero O.: Banach’s fixed theorem for partial metric spaces. Rend. Istit. Mat. Univ. Trieste. 36, 17–26 (2004) es_ES
dc.description.references Păcurar M., Rus I.A.: Fixed point theory for cyclic $${\phi}$$ -contractions. Nonlinear Anal. 72, 1181–1187 (2010) es_ES
dc.description.references Petric M.A.: Best proximity point theorems for weak cyclic Kannan contractions. Filomat. 25, 145–154 (2011) es_ES
dc.description.references Romaguera, S.: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. (2010, article ID 493298, 6 pages). es_ES
dc.description.references Romaguera, S.: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. (2011). doi: 10.1016/j.topol.2011.08.026 es_ES
dc.description.references Romaguera S., Valero O.: A quantitative computational model for complete partial metric spaces via formal balls. Math. Struct. Comput. Sci. 19, 541–563 (2009) es_ES
dc.description.references Rus, I.A.: Cyclic representations and fixed points. Annals of the Tiberiu Popoviciu Seminar of Functional equations. Approx. Convexity 3, 171–178 (2005), ISSN 1584-4536 es_ES
dc.description.references Schellekens M.P.: The correspondence between partial metrics and semivaluations. Theoret. Comput. Sci. 315, 135–149 (2004) es_ES
dc.description.references Valero O.: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Top. 6, 229–240 (2005) es_ES
dc.description.references Waszkiewicz P.: Quantitative continuous domains. Appl. Cat. Struct. 11, 41–67 (2003) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem