Mostrar el registro sencillo del ítem
dc.contributor.author | Abbas, Mujahid | es_ES |
dc.contributor.author | Nazir, T. | es_ES |
dc.contributor.author | Romaguera Bonilla, Salvador | es_ES |
dc.date.accessioned | 2015-03-24T14:14:20Z | |
dc.date.available | 2015-03-24T14:14:20Z | |
dc.date.issued | 2012-09 | |
dc.identifier.issn | 1578-7303 | |
dc.identifier.uri | http://hdl.handle.net/10251/48226 | |
dc.description.abstract | Rus (Approx. Convexity 3:171–178, 2005) introduced the concept of cyclic contraction mapping. P˘acurar and Rus (Nonlinear Anal. 72:1181–1187, 2010) proved some fixed point results for cyclic φ-contraction mappings on a metric space. Karapinar (Appl. Math. Lett. 24:822–825, 2011) obtained a unique fixed point of cyclic weak φ- contraction mappings and studied well-posedness problem for such mappings. On the other hand, Matthews (Ann. New York Acad. Sci. 728:183–197, 1994) introduced the concept of a partial metric as a part of the study of denotational semantics of dataflow networks. He gave a modified version of the Banach contraction principle, more suitable in this context. In this paper, we initiate the study of fixed points of generalized cyclic contraction in the framework of partial metric spaces. We also present some examples to validate our results. | es_ES |
dc.description.sponsorship | S. Romaguera acknowledges the support of the Ministry of Science and Innovation of Spain, grant MTM2009-12872-C02-01. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | 54H25 | es_ES |
dc.subject | 47H10 | es_ES |
dc.subject | Partial metric space | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | Cyclic contraction | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Fixed point results for generalized cyclic contraction mappings in partial metric spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-011-0051-5 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2009-12872-C02-01/ES/Construccion De Casi-Metricas Fuzzy, De Distancias De Complejidad Y De Dominios Cuantitativos. Aplicaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Abbas, M.; Nazir, T.; Romaguera Bonilla, S. (2012). Fixed point results for generalized cyclic contraction mappings in partial metric spaces. Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas. 106(2):287-297. https://doi.org/10.1007/s13398-011-0051-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s13398-011-0051-5 | es_ES |
dc.description.upvformatpinicio | 287 | es_ES |
dc.description.upvformatpfin | 297 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 106 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 231423 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Abdeljawad T., Karapinar E., Tas K.: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 24(11), 1894–1899 (2011). doi: 10.1016/j.aml.2011.5.014 | es_ES |
dc.description.references | Altun, I., Erduran A.: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. article ID 508730 (2011). doi: 10.1155/2011/508730 | es_ES |
dc.description.references | Altun I., Sadarangani K.: Corrigendum to “Generalized contractions on partial metric spaces” [Topology Appl. 157 (2010), 2778–2785]. Topol. Appl. 158, 1738–1740 (2011) | es_ES |
dc.description.references | Altun I., Simsek H.: Some fixed point theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 1, 1–8 (2008) | es_ES |
dc.description.references | Altun I., Sola F., Simsek H.: Generalized contractions on partial metric spaces. Topol. Appl. 157, 2778–2785 (2010) | es_ES |
dc.description.references | Aydi, H.: Some fixed point results in ordered partial metric spaces. arxiv:1103.3680v1 [math.GN](2011) | es_ES |
dc.description.references | Boyd D.W., Wong J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969) | es_ES |
dc.description.references | Bukatin M., Kopperman R., Matthews S., Pajoohesh H.: Partial metric spaces. Am. Math. Monthly 116, 708–718 (2009) | es_ES |
dc.description.references | Bukatin M.A., Shorina S.Yu. et al.: Partial metrics and co-continuous valuations. In: Nivat, M. (eds) Foundations of software science and computation structure Lecture notes in computer science vol 1378., pp. 125–139. Springer, Berlin (1998) | es_ES |
dc.description.references | Derafshpour M., Rezapour S., Shahzad N.: On the existence of best proximity points of cyclic contractions. Adv. Dyn. Syst. Appl. 6, 33–40 (2011) | es_ES |
dc.description.references | Heckmann R.: Approximation of metric spaces by partial metric spaces. Appl. Cat. Struct. 7, 71–83 (1999) | es_ES |
dc.description.references | Karapinar E.: Fixed point theory for cyclic weak $${\phi}$$ -contraction. App. Math. Lett. 24, 822–825 (2011) | es_ES |
dc.description.references | Karapinar, E.: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011,4 (2011). doi: 10.1186/1687-1812-2011-4 | es_ES |
dc.description.references | Karapinar E.: Weak $${\varphi}$$ -contraction on partial metric spaces and existence of fixed points in partially ordered sets. Math. Aeterna. 1(4), 237–244 (2011) | es_ES |
dc.description.references | Karapinar E., Erhan I.M.: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24, 1894–1899 (2011) | es_ES |
dc.description.references | Karpagam S., Agrawal S.: Best proximity point theorems for cyclic orbital Meir–Keeler contraction maps. Nonlinear Anal. 74, 1040–1046 (2011) | es_ES |
dc.description.references | Kirk W.A., Srinavasan P.S., Veeramani P.: Fixed points for mapping satisfying cylical contractive conditions. Fixed Point Theory. 4, 79–89 (2003) | es_ES |
dc.description.references | Kosuru, G.S.R., Veeramani, P.: Cyclic contractions and best proximity pair theorems). arXiv:1012.1434v2 [math.FA] 29 May (2011) | es_ES |
dc.description.references | Matthews S.G.: Partial metric topology. in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728, 183–197 (1994) | es_ES |
dc.description.references | Neammanee K., Kaewkhao A.: Fixed points and best proximity points for multi-valued mapping satisfying cyclical condition. Int. J. Math. Sci. Appl. 1, 9 (2011) | es_ES |
dc.description.references | Oltra S., Valero O.: Banach’s fixed theorem for partial metric spaces. Rend. Istit. Mat. Univ. Trieste. 36, 17–26 (2004) | es_ES |
dc.description.references | Păcurar M., Rus I.A.: Fixed point theory for cyclic $${\phi}$$ -contractions. Nonlinear Anal. 72, 1181–1187 (2010) | es_ES |
dc.description.references | Petric M.A.: Best proximity point theorems for weak cyclic Kannan contractions. Filomat. 25, 145–154 (2011) | es_ES |
dc.description.references | Romaguera, S.: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. (2010, article ID 493298, 6 pages). | es_ES |
dc.description.references | Romaguera, S.: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. (2011). doi: 10.1016/j.topol.2011.08.026 | es_ES |
dc.description.references | Romaguera S., Valero O.: A quantitative computational model for complete partial metric spaces via formal balls. Math. Struct. Comput. Sci. 19, 541–563 (2009) | es_ES |
dc.description.references | Rus, I.A.: Cyclic representations and fixed points. Annals of the Tiberiu Popoviciu Seminar of Functional equations. Approx. Convexity 3, 171–178 (2005), ISSN 1584-4536 | es_ES |
dc.description.references | Schellekens M.P.: The correspondence between partial metrics and semivaluations. Theoret. Comput. Sci. 315, 135–149 (2004) | es_ES |
dc.description.references | Valero O.: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Top. 6, 229–240 (2005) | es_ES |
dc.description.references | Waszkiewicz P.: Quantitative continuous domains. Appl. Cat. Struct. 11, 41–67 (2003) | es_ES |