Mostrar el registro sencillo del ítem
dc.contributor.author | Peidro Payá, David | es_ES |
dc.contributor.author | Mula, Josefa | es_ES |
dc.contributor.author | Alemany Díaz, María del Mar | es_ES |
dc.contributor.author | Lario Esteban, Francisco Cruz | es_ES |
dc.date.accessioned | 2015-03-24T17:41:34Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0020-7543 | |
dc.identifier.uri | http://hdl.handle.net/10251/48246 | |
dc.description | This is an Accepted Manuscript of an article published in International Journal of Production Research on 2012, available online: http://www.tandfonline.com/10.1080/00207543.2011.588267. | es_ES |
dc.description.abstract | In this paper, we consider the master planning problem for a centralised replenishment, production and distribution ceramic tile supply chain. A fuzzy multi-objective linear programming (FMOLP) approach is presented which considers the maximisation of the fuzzy gross margin, the minimisation of the fuzzy idle time and the minimisation of the fuzzy backorder quantities. By using an interactive solution methodology to convert this FMOLP model into an auxiliary crisp single-objective linear model, a preferred compromise solution is obtained. For illustration purposes, an example based on modifications of real-world industrial problems is used. | es_ES |
dc.description.sponsorship | This research has been carried out in the framework of a project funded by the Science and Technology Ministry of the Spanish Government, entitled 'Project of reinforcement of the competitiveness of the Spanish managerial fabric through the logistics as a strategic factor in a global environment' (Ref. PSE-370000-2008-8). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | International Journal of Production Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | master planning | es_ES |
dc.subject | Supply chain | es_ES |
dc.subject | ceramic sector | es_ES |
dc.subject | fuzzy multi-objective | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Fuzzy multi-objective optimisation for master planning in a ceramic supply chain | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1080/00207543.2011.588267 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PSE-370000-2008-0008/ES/PROYECTO DE POTENCIACIÓN DE LA COMPETITIVIDAD DEL TEJIDO EMPRESARIAL ESPAÑOL A TRAVÉS DE LA LOGÍSTICA COMO FACTOR ESTRATÉGICO EN UN ENTORNO GLOBAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Investigación de Gestión e Ingeniería de la Producción - Centre d'Investigació de Gestió i Enginyeria de la Producció | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Peidro Payá, D.; Mula, J.; Alemany Díaz, MDM.; Lario Esteban, FC. (2012). Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. International Journal of Production Research. 50(11):3011-3020. https://doi.org/10.1080/00207543.2011.588267 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.tandfonline.com/10.1080/00207543.2011.588267 | es_ES |
dc.description.upvformatpinicio | 3011 | es_ES |
dc.description.upvformatpfin | 3020 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 50 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 208023 | |
dc.identifier.eissn | 1366-588X | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Alemany, M.M.E.et al., 2010. Mathematical programming model for centralized master planning in ceramic tile supply chains.International Journal of Production Research, 48 (17), 5053–5074 | es_ES |
dc.description.references | Beamon, B. M. (1998). Supply chain design and analysis: International Journal of Production Economics, 55(3), 281-294. doi:10.1016/s0925-5273(98)00079-6 | es_ES |
dc.description.references | Chen, C.-L., & Lee, W.-C. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers & Chemical Engineering, 28(6-7), 1131-1144. doi:10.1016/j.compchemeng.2003.09.014 | es_ES |
dc.description.references | Chern, C.-C., & Hsieh, J.-S. (2007). A heuristic algorithm for master planning that satisfies multiple objectives. Computers & Operations Research, 34(11), 3491-3513. doi:10.1016/j.cor.2006.02.022 | es_ES |
dc.description.references | Kreipl, S., & Pinedo, M. (2009). Planning and Scheduling in Supply Chains: An Overview of Issues in Practice. Production and Operations Management, 13(1), 77-92. doi:10.1111/j.1937-5956.2004.tb00146.x | es_ES |
dc.description.references | Lai, Y.-J., & Hwang, C.-L. (1993). Possibilistic linear programming for managing interest rate risk. Fuzzy Sets and Systems, 54(2), 135-146. doi:10.1016/0165-0114(93)90271-i | es_ES |
dc.description.references | Li, X., Zhang, B., & Li, H. (2006). Computing efficient solutions to fuzzy multiple objective linear programming problems. Fuzzy Sets and Systems, 157(10), 1328-1332. doi:10.1016/j.fss.2005.12.003 | es_ES |
dc.description.references | Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377-390. doi:10.1016/j.ejor.2009.09.008 | es_ES |
dc.description.references | Mula, J., Peidro, D., and Poler, R., 2010b. The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand.International Journal of Production Economics, In press | es_ES |
dc.description.references | Park *, Y. B. (2005). An integrated approach for production and distribution planning in supply chain management. International Journal of Production Research, 43(6), 1205-1224. doi:10.1080/00207540412331327718 | es_ES |
dc.description.references | Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2008). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3-4), 400-420. doi:10.1007/s00170-008-1715-y | es_ES |
dc.description.references | Peidro, D., Mula, J., Poler, R., & Verdegay, J.-L. (2009). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems, 160(18), 2640-2657. doi:10.1016/j.fss.2009.02.021 | es_ES |
dc.description.references | Selim, H., Araz, C., & Ozkarahan, I. (2008). Collaborative production–distribution planning in supply chain: A fuzzy goal programming approach. Transportation Research Part E: Logistics and Transportation Review, 44(3), 396-419. doi:10.1016/j.tre.2006.11.001 | es_ES |
dc.description.references | Selim, H., & Ozkarahan, I. (2006). A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. The International Journal of Advanced Manufacturing Technology, 36(3-4), 401-418. doi:10.1007/s00170-006-0842-6 | es_ES |
dc.description.references | Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214. doi:10.1016/j.fss.2007.08.010 | es_ES |
dc.description.references | Haehling von Lanzenauer, C., & Pilz-Glombik, K. (2002). Coordinating supply chain decisions: an optimization model. OR Spectrum, 24(1), 59-78. doi:10.1007/s291-002-8200-3 | es_ES |
dc.description.references | Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55. doi:10.1016/0165-0114(78)90031-3 | es_ES |