- -

Fuzzy multi-objective optimisation for master planning in a ceramic supply chain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fuzzy multi-objective optimisation for master planning in a ceramic supply chain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peidro Payá, David es_ES
dc.contributor.author Mula, Josefa es_ES
dc.contributor.author Alemany Díaz, María del Mar es_ES
dc.contributor.author Lario Esteban, Francisco Cruz es_ES
dc.date.accessioned 2015-03-24T17:41:34Z
dc.date.issued 2012
dc.identifier.issn 0020-7543
dc.identifier.uri http://hdl.handle.net/10251/48246
dc.description This is an Accepted Manuscript of an article published in International Journal of Production Research on 2012, available online: http://www.tandfonline.com/10.1080/00207543.2011.588267. es_ES
dc.description.abstract In this paper, we consider the master planning problem for a centralised replenishment, production and distribution ceramic tile supply chain. A fuzzy multi-objective linear programming (FMOLP) approach is presented which considers the maximisation of the fuzzy gross margin, the minimisation of the fuzzy idle time and the minimisation of the fuzzy backorder quantities. By using an interactive solution methodology to convert this FMOLP model into an auxiliary crisp single-objective linear model, a preferred compromise solution is obtained. For illustration purposes, an example based on modifications of real-world industrial problems is used. es_ES
dc.description.sponsorship This research has been carried out in the framework of a project funded by the Science and Technology Ministry of the Spanish Government, entitled 'Project of reinforcement of the competitiveness of the Spanish managerial fabric through the logistics as a strategic factor in a global environment' (Ref. PSE-370000-2008-8). en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Production Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject master planning es_ES
dc.subject Supply chain es_ES
dc.subject ceramic sector es_ES
dc.subject fuzzy multi-objective es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Fuzzy multi-objective optimisation for master planning in a ceramic supply chain es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1080/00207543.2011.588267
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PSE-370000-2008-0008/ES/PROYECTO DE POTENCIACIÓN DE LA COMPETITIVIDAD DEL TEJIDO EMPRESARIAL ESPAÑOL A TRAVÉS DE LA LOGÍSTICA COMO FACTOR ESTRATÉGICO EN UN ENTORNO GLOBAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Investigación de Gestión e Ingeniería de la Producción - Centre d'Investigació de Gestió i Enginyeria de la Producció es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Peidro Payá, D.; Mula, J.; Alemany Díaz, MDM.; Lario Esteban, FC. (2012). Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. International Journal of Production Research. 50(11):3011-3020. https://doi.org/10.1080/00207543.2011.588267 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.tandfonline.com/10.1080/00207543.2011.588267 es_ES
dc.description.upvformatpinicio 3011 es_ES
dc.description.upvformatpfin 3020 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 208023
dc.identifier.eissn 1366-588X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Alemany, M.M.E.et al., 2010. Mathematical programming model for centralized master planning in ceramic tile supply chains.International Journal of Production Research, 48 (17), 5053–5074 es_ES
dc.description.references Beamon, B. M. (1998). Supply chain design and analysis: International Journal of Production Economics, 55(3), 281-294. doi:10.1016/s0925-5273(98)00079-6 es_ES
dc.description.references Chen, C.-L., & Lee, W.-C. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers & Chemical Engineering, 28(6-7), 1131-1144. doi:10.1016/j.compchemeng.2003.09.014 es_ES
dc.description.references Chern, C.-C., & Hsieh, J.-S. (2007). A heuristic algorithm for master planning that satisfies multiple objectives. Computers & Operations Research, 34(11), 3491-3513. doi:10.1016/j.cor.2006.02.022 es_ES
dc.description.references Kreipl, S., & Pinedo, M. (2009). Planning and Scheduling in Supply Chains: An Overview of Issues in Practice. Production and Operations Management, 13(1), 77-92. doi:10.1111/j.1937-5956.2004.tb00146.x es_ES
dc.description.references Lai, Y.-J., & Hwang, C.-L. (1993). Possibilistic linear programming for managing interest rate risk. Fuzzy Sets and Systems, 54(2), 135-146. doi:10.1016/0165-0114(93)90271-i es_ES
dc.description.references Li, X., Zhang, B., & Li, H. (2006). Computing efficient solutions to fuzzy multiple objective linear programming problems. Fuzzy Sets and Systems, 157(10), 1328-1332. doi:10.1016/j.fss.2005.12.003 es_ES
dc.description.references Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377-390. doi:10.1016/j.ejor.2009.09.008 es_ES
dc.description.references Mula, J., Peidro, D., and Poler, R., 2010b. The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand.International Journal of Production Economics, In press es_ES
dc.description.references Park *, Y. B. (2005). An integrated approach for production and distribution planning in supply chain management. International Journal of Production Research, 43(6), 1205-1224. doi:10.1080/00207540412331327718 es_ES
dc.description.references Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2008). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3-4), 400-420. doi:10.1007/s00170-008-1715-y es_ES
dc.description.references Peidro, D., Mula, J., Poler, R., & Verdegay, J.-L. (2009). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems, 160(18), 2640-2657. doi:10.1016/j.fss.2009.02.021 es_ES
dc.description.references Selim, H., Araz, C., & Ozkarahan, I. (2008). Collaborative production–distribution planning in supply chain: A fuzzy goal programming approach. Transportation Research Part E: Logistics and Transportation Review, 44(3), 396-419. doi:10.1016/j.tre.2006.11.001 es_ES
dc.description.references Selim, H., & Ozkarahan, I. (2006). A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. The International Journal of Advanced Manufacturing Technology, 36(3-4), 401-418. doi:10.1007/s00170-006-0842-6 es_ES
dc.description.references Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214. doi:10.1016/j.fss.2007.08.010 es_ES
dc.description.references Haehling von Lanzenauer, C., & Pilz-Glombik, K. (2002). Coordinating supply chain decisions: an optimization model. OR Spectrum, 24(1), 59-78. doi:10.1007/s291-002-8200-3 es_ES
dc.description.references Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55. doi:10.1016/0165-0114(78)90031-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem